This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2025 Sharygin Geometry Olympiad, 3

An excircle centered at $I_{A}$ touches the side $BC$ of a triangle $ABC$ at point $D$. Prove that the pedal circles of $D$ with respect to the triangles $ABI_{A}$ and $ACI_{A}$ are congruent. Proposed by:K.Belsky

Kyiv City MO Juniors Round2 2010+ geometry, 2014.7.4

Tags: angle , ratio , median , geometry
The median $BM$ is drawn in the triangle $ABC$. It is known that $\angle ABM = 40 {} ^ \circ$ and $\angle CBM = 70 {} ^ \circ $ Find the ratio $AB: BM$.

2013 Today's Calculation Of Integral, 874

Given a parabola $C : y=1-x^2$ in $xy$-palne with the origin $O$. Take two points $P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)$ on $C$. (1) Express the area $S$ of the part enclosed by two segments $OP,\ OQ$ and the parabalola $C$ in terms of $p,\ q$. (2) If $q=p+1$, then find the minimum value of $S$. (3) If $pq=-1$, then find the minimum value of $S$.

2019 Germany Team Selection Test, 2

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2009 Postal Coaching, 4

Let $ABC$ be a triangle, and let $DEF$ be another triangle inscribed in the incircle of $ABC$. If $s$ and $s_1$ denote the semiperimeters of $ABC$ and $DEF$ respectively, prove that $2s_1 \le s$. When does equality hold?

2010 Oral Moscow Geometry Olympiad, 4

An isosceles triangle $ABC$ with base $AC$ is given. Point $H$ is the intersection of altitudes. On the sides $AB$ and $BC$, points $M$ and $K$ are selected, respectively, so that the angle $KMH$ is right. Prove that a right-angled triangle can be constructed from the segments $AK, CM$ and $MK$.

2006 AIME Problems, 2

The lengths of the sides of a triangle with positive area are $\log_{10} 12$, $\log_{10} 75$, and $\log_{10} n$, where $n$ is a positive integer. Find the number of possible values for $n$.

2020 OMMock - Mexico National Olympiad Mock Exam, 4

Let $ABC$ be a triangle. Suppose that the perpendicular bisector of $BC$ meets the circle of diameter $AB$ at a point $D$ at the opposite side of $BC$ with respect to $A$, and meets the circle through $A, C, D$ again at $E$. Prove that $\angle ACE=\angle BCD$. [i]Proposed by José Manuel Guerra and Victor Domínguez[/i]

Novosibirsk Oral Geo Oly VIII, 2022.6

Anton has an isosceles right triangle, which he wants to cut into $9$ triangular parts in the way shown in the picture. What is the largest number of the resulting $9$ parts that can be equilateral triangles? A more formal description of partitioning. Let triangle $ABC$ be given. We choose two points on its sides so that they go in the order $AC_1C_2BA_1A_2CB_1B_2$, and no two coincide. In addition, the segments $C_1A_2$, $A_1B_2$ and $B_1C_2$ must intersect at one point. Then the partition is given by segments $C_1A_2$, $A_1B_2$, $B_1C_2$, $A_1C_2$, $B_1A_2$ and $C_1B_2$. [img]https://cdn.artofproblemsolving.com/attachments/0/5/5dd914b987983216342e23460954d46755d351.png[/img]

2006 International Zhautykov Olympiad, 2

Let $ ABC$ be a triangle and $ K$ and $ L$ be two points on $ (AB)$, $ (AC)$ such that $ BK \equal{} CL$ and let $ P \equal{} CK\cap BL$. Let the parallel through $ P$ to the interior angle bisector of $ \angle BAC$ intersect $ AC$ in $ M$. Prove that $ CM \equal{} AB$.

2010 Romania Team Selection Test, 3

Two rectangles of unit area overlap to form a convex octagon. Show that the area of the octagon is at least $\dfrac {1} {2}$. [i]Kvant Magazine [/i]

1966 IMO Shortlist, 59

Let $a,b,c$ be the lengths of the sides of a triangle, and $\alpha, \beta, \gamma$ respectively, the angles opposite these sides. Prove that if \[ a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) \] the triangle is isosceles.

1946 Moscow Mathematical Olympiad, 106

Tags: acute , angle , geometry , maximum
What is the largest number of acute angles that a convex polygon can have?

2018 Hanoi Open Mathematics Competitions, 7

Tags: pentagon , geometry
Suppose that $ABCDE$ is a convex pentagon with $\angle A = 90^o,\angle B = 105^o,\angle C = 90^o$ and $AB = 2,BC = CD = DE =\sqrt2$. If the length of $AE$ is $\sqrt{a }- b$ where $a, b$ are integers, what is the value of $a + b$?

2018 BMT Spring, 8

Tags: geometry
What is the largest possible area of a triangle with largest side length $39$ and inradius $10$?

2009 Moldova National Olympiad, 10.4

Let the isosceles triangle $ABC$ with $| AB | = | AC |$. The point $M$ is the midpoint of the base $[BC]$, the point $N$ is the orthogonal projection of the point $M$ on the line $AC$, and the point $P$ is located on the segment $(MC)$ such that $| MP | = | P C | \sin^2 C$. Prove that the lines $AP$ and $BN$ are perpendicular.

2010 Portugal MO, 2

Tags: geometry
On a circumference, points $A$ and $B$ are on opposite arcs of diameter $CD$. Line segments $CE$ and $DF$ are perpendicular to $AB$ such that $A-E-F-B$ (i.e., $A$, $E$, $F$ and $B$ are collinear on this order). Knowing $AE=1$, find the length of $BF$.

2006 Spain Mathematical Olympiad, 3

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ intersect at $E$. Denotes by $S_1,S_2$ and $S$ the areas of the triangles $ABE$, $CDE$ and the quadrilateral $ABCD$ respectively. Prove that $\sqrt{S_1}+\sqrt{S_2}\le \sqrt{S}$ . When equality is reached?

2020 Junior Balkаn MO, 4

Find all prime numbers $p$ and $q$ such that $$1 + \frac{p^q - q^p}{p + q}$$ is a prime number. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2023 Turkey Junior National Olympiad, 2

Tags: incenter , geometry
Let $ABCD$ be an inscribed quadrilateral. Let the incenters of $BAD$ and $CAD$ be $I$ and $J$ respectively. Let the intersection point of the line that passes through $I$ and perpendicular to $BD$ and the line that passes through $J$ and perpendicular to $AC$ be $K$. Prove that $KI=KJ$

2008 Turkey MO (2nd round), 2

Tags: symmetry , geometry
A circle $ \Gamma$ and a line $ \ell$ is given in a plane such that $ \ell$ doesn't cut $ \Gamma$.Determine the intersection set of the circles has $ [AB]$ as diameter for all pairs of $ \left\{A,B\right\}$ (lie on $ \ell$) and satisfy $ P,Q,R,S \in \Gamma$ such that $ PQ \cap RS\equal{}\left\{A\right\}$ and $ PS \cap QR\equal{}\left\{B\right\}$

2010 Kurschak Competition, 2

Consider a triangle $ABC$, with the points $A_1$, $A_2$ on side $BC$, $B_1,B_2\in\overline{AC}$, $C_1,C_2\in\overline{AB}$ such that $AC_1<AC_2$, $BA_1<BA_2$, $CB_1<CB_2$. Let the circles $AB_1C_1$ and $AB_2C_2$ meet at $A$ and $A^*$. Similarly, let the circles $BC_1A_1$ and $BC_2A_2$ intersect at $B^*\neq B$, let $CA_1B_1$ and $CA_2B_2$ intersect at $C^*\neq C$. Prove that the lines $AA^*$, $BB^*$, $CC^*$ are concurrent.

1993 India National Olympiad, 1

The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ intersect at $P$. Let $O$ be the circumcenter of triangle $APB$ and $H$ be the orthocenter of triangle $CPD$. Show that the points $H,P,O$ are collinear.

1999 Italy TST, 2

Let $D$ and $E$ be points on sides $AB$ and $AC$ respectively of a triangle $ABC$ such that $DE$ is parallel to $BC$ and tangent to the incircle of $ABC$. Prove that \[DE\le\frac{1}{8}(AB+BC+CA) \]

2016 Azerbaijan IMO TST First Round, 2

Tags: geometry
$ABC$ be atriangle with sides $AB=20$ , $AC=21$ and $BC=29$. Let $D$ and $E$ be points on the side $BC$ such that $BD=8$ and $EC=9$. Find the angle $\angle DAE$.