Found problems: 25757
1994 Brazil National Olympiad, 1
The edges of a cube are labeled from 1 to 12 in an arbitrary manner. Show that it is not possible to get the sum of the edges at each vertex the same.
Show that we can get eight vertices with the same sum if one of the labels is changed to 13.
1997 May Olympiad, 2
In the rectangle $ABCD, M, N, P$ and $Q$ are the midpoints of the sides. If the area of the shaded triangle is $1$, calculate the area of the rectangle $ABCD$.
[img]https://2.bp.blogspot.com/-9iyKT7WP5fc/XNYuXirLXSI/AAAAAAAAKK4/10nQuSAYypoFBWGS0cZ5j4vn_hkYr8rcwCK4BGAYYCw/s400/may3.gif[/img]
1984 Austrian-Polish Competition, 1
Prove that if the feet of the altitudes of a tetrahedron are the incenters of the corresponding faces, then the tetrahedron is regular.
2021 Tuymaada Olympiad, 2
In trapezoid $ABCD$,$M$ is the midpoint of the base $AD$.Point $E$ lies on the segment $BM$.It is known that $\angle ADB=\angle MAE=\angle BMC$.Prove that the triangle $BCE $ is isosceles.
2013 Saudi Arabia BMO TST, 1
$ABCD$ is a cyclic quadrilateral and $\omega$ its circumcircle. The perpendicular line to $AC$ at $D$ intersects $AC$ at $E$ and $\omega$ at F. Denote by $\ell$ the perpendicular line to $BC$ at $F$. The perpendicular line to $\ell$ at A intersects $\ell$ at $G$ and $\omega$ at $H$. Line $GE$ intersects $FH$ at $I$ and $CD$ at $J$. Prove that points $C, F, I$ and $J$ are concyclic
2012 Gulf Math Olympiad, 4
Fawzi cuts a spherical cheese completely into (at least three) slices of equal thickness. He starts at one end, making successive parallel cuts, working through the cheese until the slicing is complete. The discs exposed by the first two cuts have integral areas.
[list](i) Prove that all the discs that he cuts have integral areas.
(ii) Prove that the original sphere had integral surface area if, and only if, the area of the second disc that he exposes is even.[/list]
Maryland University HSMC part II, 2015
[b]p1.[/b] Nine coins are placed in a row, alternating between heads and tails as follows: $H T H T H T H T H$. A legal move consists of turning over any two adjacent coins.
(a) Give a sequence of legal moves that changes the configuration into $H H H H H H H H H$.
(b) Prove that there is no sequence of legal moves that changes the original configuration into $T T T T T T T T T$.
[b]p2.[/b] Find (with proof) all integers $k $that satisfy the equation
$$\frac{k - 15}{2000}+\frac{k - 12}{2003}+\frac{k - 9}{2006}+\frac{k - 6}{2009}+\frac{k - 3}{2012}
= \frac{k - 2000}{15}+\frac{k - 2003}{12}+\frac{k - 2006}{9}+\frac{k - 2009}{6}+\frac{k - 2012}{3}.$$
[b]p3.[/b] Some (not necessarily distinct) natural numbers from $1$ to $2015$ are written on $2015$ lottery tickets, with exactly one number written on each ticket. It is known that the sum of the numbers on any nonempty subset of tickets (including the set of all tickets) is not divisible by $2016$. Prove that the same number is written on all of the tickets.
[b]p4.[/b] A set of points $A$ is called distance-distinct if every pair of points in $A$ has a different distance.
(a) Show that for all infinite sets of points $B$ on the real line, there exists an infinite distance-distinct set A contained in $B$.
(b) Show that for all infinite sets of points $B$ on the real plane, there exists an infinite distance-distinct set A contained in $B$.
[b]p5.[/b] Let $ABCD$ be a (not necessarily regular) tetrahedron and consider six points $E, F, G, H, I, J$ on its edges $AB$, $BC$, $AC$, $AD$, $BD$, $CD$, respectively, such that $$|AE| \cdot |EB| = |BF| \cdot |FC| = |AG| \cdot |GC| = |AH| \cdot |HD| = |BI| \cdot |ID| = |CJ| \cdot |JD|.$$ Prove that the points $E, F, G, H, I$, and $J$ lie on the surface of a sphere.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1979 Miklós Schweitzer, 7
Let $ T$ be a triangulation of an $ n$-dimensional sphere, and to each vertex of $ T$ let us assign a nonzero vector of a linear space $ V$. Show that if $ T$ has an $ n$-dimensional simplex such that the vectors assigned to the vertices of this simplex are linearly independent, then another such simplex must also exist.
[i]L. Lovasz[/i]
2002 CentroAmerican, 6
A path from $ (0,0)$ to $ (n,n)$ on the lattice is made up of unit moves upward or rightward. It is balanced if the sum of the x-coordinates of its $ 2n\plus{}1$ vertices equals the sum of their y-coordinates. Show that a balanced path divides the square with vertices $ (0,0)$, $ (n,0)$, $ (n,n)$, $ (0,n)$ into two parts with equal area.
Russian TST 2015, P2
In the isosceles triangle $ABC$ where $AB = AC$, the point $I{}$ is the center of the inscribed circle. Through the point $A{}$ all the rays lying inside the angle $BAC$ are drawn. For each such ray, we denote by $X{}$ and $Y{}$ the points of intersection with the arc $BIC$ and the straight line $BC$ respectively. The circle $\gamma$ passing through $X{}$ and $Y{}$, which touches the arc $BIC$ at the point $X{}$ is considered. Prove that all the circles $\gamma$ pass through a fixed point.
2021 Science ON grade IX, 4
$\textbf{(a)}$ On the sides of triangle $ABC$ we consider the points $M\in \overline{BC}$, $N\in \overline{AC}$ and $P\in \overline{AB}$ such that the quadrilateral $MNAP$ with right angles $\angle MNA$ and $\angle MPA$ has an inscribed circle. Prove that $MNAP$ has to be a kite.
$\textbf{(b)}$ Is it possible for an isosceles trapezoid to be orthodiagonal and circumscribed too?
[i] (Călin Udrea) [/i]
2018 Malaysia National Olympiad, A4
Given a circle with diameter $AB$. Points $C$ and $D$ are selected on the circumference of the circle such that the chord $CD$ intersects $AB$ inside the circle, at point $P$. The ratio of the arc length $\overarc {AC}$ to the arc length $\overarc {BD}$ is $4 : 1$ , while the ratio of the arc length $\overarc{AD}$ to the arc length $\overarc {BC}$ is $3 : 2$ . Find $\angle{APC}$ , in degrees.
2022/2023 Tournament of Towns, P2
Perimeter of triangle $ABC$ is $1$. Circle $\omega$ touches side $BC$, continuation of side $AB$ at $P$ and continuation of side $AC$ in $Q$. Line through midpoints $AB$ and $AC$ intersects circumcircle of $APQ$ at $X$ and $Y$.
Find length of $XY$.
PEN H Problems, 54
Show that the number of integral-sided right triangles whose ratio of area to semi-perimeter is $p^{m}$, where $p$ is a prime and $m$ is an integer, is $m+1$ if $p=2$ and $2m+1$ if $p \neq 2$.
2023 Romania Team Selection Test, P5
Let $ABCDEF$ be a convex hexagon. The diagonals $AC$ and $BD$ cross at $P,$ the diagonals $AE{}$ and $DF$ cross at $Q,$ and the line $PQ$ crosses the sides $BC$ and $EF$ at $X$ and $Y,{}$ respectively. Prove that the length of the segment $XY$ does not exceed the sum of the lengths of one of the diagonals through $P{}$ and one of the diagonals through $Q{}$.
[i]The Problem Selection Committee[/i]
2008 Indonesia TST, 1
Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.
2022 All-Russian Olympiad, 7
Point $E$ is marked on side $BC$ of parallelogram $ABCD$, and on the side $AD$ - point $F$ so that the circumscribed circle of $ABE$ is tangent to line segment $CF$. Prove that the circumcircle of triangle $CDF$ is tangent to line $AE$.
Ukraine Correspondence MO - geometry, 2005.7
Let $O$ be the point of intersection of the diagonals of the trapezoid $ABCD$ with the bases $AB$ and $CD$. It is known that $\angle AOB = \angle DAB = 90^o$. On the sides $AD$ and $BC$ take the points $E$ and $F$ so that $EF\parallel AB$ and $EF = AD$. Find the angle $\angle AOE$.
JOM 2025, 4
Let $ABC$ be a triangle and $E$ and $F$ lie on $AC$ and $AB$ such that $AE=AF$. $EF$ intersects $BC$ at $D$ and $(BDF)$ intersects $(CDE)$ at $X$. Let $O_1$ be the center of $(BDF)$ and $O_2$ be the center of $(CDE)$. Let $O$ be the center of $ABC$. Suppose that $XD$ intersects $(XO_1O_2)$ at $Z$. Show that $OZ\parallel BC$.
[i](Proposed by Tan Rui Xuen and Yeoh Yi Shuen)[/i]
2011 Sharygin Geometry Olympiad, 8
A convex $n$-gon $P$, where $n > 3$, is dissected into equal triangles by diagonals non-intersecting inside it. Which values of $n$ are possible, if $P$ is circumscribed?
1969 Poland - Second Round, 3
Given a quadrilateral $ ABCD $ inscribed in a circle. The images of the points $ A $ and $ C $ in symmetry with respect to the line $ BD $ are the points $ A' $ and $ C' $, respectively, and the images of the points $ B $ and $ D $ in symmetry with respect to the line $ AC $ are the points $ B'$ and $D'$ respectively. Prove that the points $ A' $, $ B' $, $ C' $, $ D' $ lie on the circle.
2022/2023 Tournament of Towns, P3
Let $I{}$ be the incenter of triangle $ABC{}.$ Let $N{}$ be the foot of the bisector of angle $B{}.$ The tangent line to the circumcircle of triangle $AIN$ at $A{}$ and the tangent line to the circumcircle of triangle $CIN{}$ at $C{}$ intersect at $D{}.$ Prove that lines $AC{}$ and $DI$ are perpendicular.
[i]Mikhail Evdokimov[/i]
2003 AMC 12-AHSME, 17
Square $ ABCD$ has sides of length $ 4$, and $ M$ is the midpoint of $ \overline{CD}$. A circle with radius $ 2$ and center $ M$ intersects a circle with raidus $ 4$ and center $ A$ at points $ P$ and $ D$. What is the distance from $ P$ to $ \overline{AD}$?
[asy]unitsize(8mm);
defaultpen(linewidth(.8pt));
dotfactor=4;
draw(Circle((2,0),2));
draw(Circle((0,4),4));
clip(scale(4)*unitsquare);
draw(scale(4)*unitsquare);
filldraw(Circle((2,0),0.07));
filldraw(Circle((3.2,1.6),0.07));
label("$A$",(0,4),NW);
label("$B$",(4,4),NE);
label("$C$",(4,0),SE);
label("$D$",(0,0),SW);
label("$M$",(2,0),S);
label("$P$",(3.2,1.6),N);[/asy]$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac {16}{5} \qquad \textbf{(C)}\ \frac {13}{4} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {7}{2}$
2001 Czech-Polish-Slovak Match, 2
A triangle $ABC$ has acute angles at $A$ and $B$. Isosceles triangles $ACD$ and $BCE$ with bases $AC$ and $BC$ are constructed externally to triangle $ABC$ such that $\angle ADC = \angle ABC$ and $\angle BEC = \angle BAC$. Let $S$ be the circumcenter of $\triangle ABC$. Prove that the length of the polygonal line $DSE$ equals the perimeter of triangle $ABC$ if and only if $\angle ACB$ is right.
2019 Bulgaria National Olympiad, 2
Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O.$ Let the intersection points of the perpendicular bisector of $CH$ with $AC$ and $BC$ be $X$ and $Y$ respectively. Lines $XO$ and $YO$ cut $AB$ at $P$ and $Q$ respectively. If $XP+YQ=AB+XY,$ determine $\measuredangle OHC.$