This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 AIME Problems, 10

A circle with center $O$ has radius 25. Chord $\overline{AB}$ of length 30 and chord $\overline{CD}$ of length 14 intersect at point $P$. The distance between the midpoints of the two chords is 12. The quantity $OP^2$ can be represented as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find the remainder where $m+n$ is divided by 1000.

2022 Chile Junior Math Olympiad, 5

In a right circular cone of wood, the radius of the circumference $T$ of the base circle measures $10$ cm, while every point on said circumference is $20$ cm away. from the apex of the cone. A red ant and a termite are located at antipodal points of $T$. A black ant is located at the midpoint of the segment that joins the vertex with the position of the termite. If the red ant moves to the black ant's position by the shortest possible path, how far does it travel?

2017 Korea - Final Round, 1

A acute triangle $\triangle ABC$ has circumcenter $O$. The circumcircle of $OAB$, called $O_1$, and the circumcircle of $OAC$, called $O_2$, meets $BC$ again at $D ( \not=B )$ and $E ( \not= C )$ respectively. The perpendicular bisector of $BC$ hits $AC$ again at $F$. Prove that the circumcenter of $\triangle ADE$ lies on $AC$ if and only if the centers of $O_1, O_2$ and $F$ are colinear.

1961 IMO, 4

Consider triangle $P_1P_2P_3$ and a point $p$ within the triangle. Lines $P_1P, P_2P, P_3P$ intersect the opposite sides in points $Q_1, Q_2, Q_3$ respectively. Prove that, of the numbers \[ \dfrac{P_1P}{PQ_1}, \dfrac{P_2P}{PQ_2}, \dfrac{P_3P}{PQ_3} \] at least one is $\leq 2$ and at least one is $\geq 2$

2015 Puerto Rico Team Selection Test, 7

Let $ABCD$ be a rectangle with sides $AB = 4$ and $BC = 3$. The perpendicular on the diagonal $BD$ drawn from $ A$ intersects $BD$ at the point $H$. We denote by $M$ the midpoint of $BH$ and $N$ the midpoint of $CD$. Calculate the length of segment $MN$.

1981 IMO Shortlist, 14

Prove that a convex pentagon (a five-sided polygon) $ABCDE$ with equal sides and for which the interior angles satisfy the condition $\angle A \geq \angle B \geq \angle C \geq \angle D \geq \angle E$ is a regular pentagon.

1896 Eotvos Mathematical Competition, 3

Construct a triangle, given the feet of its altitudes. Express the sides of a triangle $Y$ in terms of the sides of the triangle $X$ formed by the feet of the altitudes of $Y$.

2023 Indonesia Regional, 5

Given $\triangle ABC$ and points $D$ and $E$ at the line $BC$, furthermore there are points $X$ and $Y$ inside $\triangle ABC$. Let $P$ be the intersection of line $AD$ and $XE$, and $Q$ be the intersection of line $AE$ and $YD$. If there exist a circle that passes through $X, Y, D, E$, and $$\angle BXE + \angle BCA = \angle CYD + \angle CBA = 180^{\circ}$$ Prove that the line $BP$, $CQ$, and the perpendicular bisector of $BC$ intersect at one point.

1998 Korea Junior Math Olympiad, 4

$n$ lines are on the same plane, no two of them parallel and no three of them collinear(so the plane must be partitioned into some parts). How many parts is the plane partitioned into? Consider only the partitions with finitely large area.

2000 Harvard-MIT Mathematics Tournament, 3

Using $3$ colors, red, blue and yellow, how many different ways can you color a cube (modulo rigid rotations)?

1979 Brazil National Olympiad, 3

The vertex C of the triangle ABC is allowed to vary along a line parallel to AB. Find the locus of the orthocenter.

2007 IMO Shortlist, 8

Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear. [i]Author: Waldemar Pompe, Poland[/i]

1966 IMO Shortlist, 38

Two concentric circles have radii $R$ and $r$ respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between $\frac 32 \cdot \frac{\sqrt R +\sqrt r }{\sqrt R -\sqrt r } -1$ and $\frac{63}{20} \cdot \frac{R+r}{R-r}.$

2013 Korea National Olympiad, 1

Let $P$ be a point on segment $BC$. $Q, R$ are points on $AC, AB$ such that $PQ \parallel AB $ and $ PR \parallel AC$. $O, O_{1}, O_{2} $ are the circumcenters of triangle $ABC, BPR, PCQ$. The circumcircles of $BPR, PCQ $ meet at point $K (\ne P)$. Prove that $OO_{1} = KO_{2} $.

2015 AMC 10, 24

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible? $\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

2016 Azerbaijan Balkan MO TST, 1

A line is called $good$ if it bisects perimeter and area of a figure at the same time.Prove that: [i]a)[/i] all of the good lines in a triangle concur. [i]b)[/i] all of the good lines in a regular polygon concur too.

2010 Moldova Team Selection Test, 3

Let $ ABC$ be an acute triangle. $ H$ is the orthocenter and $ M$ is the middle of the side $ BC$. A line passing through $ H$ and perpendicular to $ HM$ intersect the segment $ AB$ and $ AC$ in $ P$ and $ Q$. Prove that $ MP \equal{} MQ$

2019 Stanford Mathematics Tournament, 1

Tags: geometry
Let $ABCD$ be a unit square. A semicircle with diameter $AB$ is drawn so that it lies outside of the square. If $E$ is the midpoint of arc $AB$ of the semicircle, what is the area of triangle $CDE$

2006 Switzerland Team Selection Test, 2

Let $D$ be inside $\triangle ABC$ and $E$ on $AD$ different to $D$. Let $\omega_1$ and $\omega_2$ be the circumscribed circles of $\triangle BDE$ and $\triangle CDE$ respectively. $\omega_1$ and $\omega_2$ intersect $BC$ in the interior points $F$ and $G$ respectively. Let $X$ be the intersection between $DG$ and $AB$ and $Y$ the intersection between $DF$ and $AC$. Show that $XY$ is $\|$ to $BC$.

2017, SRMC, 2

Tags: geometry
The quadrilateral $ABCD$ is inscribed in the circle ω. The diagonals $AC$ and $BD$ intersect at the point $O$. On the segments $AO$ and $DO$, the points $E$ and $F$ are chosen, respectively. The straight line $EF$ intersects ω at the points $E_1$ and $F_1$. The circumscribed circles of the triangles $ADE$ and $BCF$ intersect the segment $EF$ at the points $E_2$ and $F_2$ respectively (assume that all the points $E, F, E_1, F_1, E_2$ and $F_2$ are different). Prove that $E_1E_2 = F_1F_2$. $(N. Sedrakyan)$

2008 ITest, 14

The sum of the two perfect cubes that are closest to $500$ is $343+512=855$. Find the sum of the two perfect cubes that are closest to $2008$.

2001 India IMO Training Camp, 1

Let $ABCD$ be a rectangle, and let $\omega$ be a circular arc passing through the points $A$ and $C$. Let $\omega_{1}$ be the circle tangent to the lines $CD$ and $DA$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Similiarly let $\omega_{2}$ be the circle tangent to the lines $AB$ and $BC$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Denote by $r_{1}$ and $r_{2}$ the radii of the circles $\omega_{1}$ and $\omega_{2}$, respectively, and by $r$ the inradius of triangle $ABC$. [b](a)[/b] Prove that $r_{1}+r_{2}=2r$. [b](b)[/b] Prove that one of the two common internal tangents of the two circles $\omega_{1}$ and $\omega_{2}$ is parallel to the line $AC$ and has the length $\left|AB-AC\right|$.

1987 Czech and Slovak Olympiad III A, 6

Let $AA',BB',CC'$ be parallel lines not lying in the same plane. Denote $U$ the intersection of the planes $A'BC,AB'C,ABC'$ and $V$ the intersection of the planes $AB'C',A'BC',A'B'C$. Show that the line $UV$ is parallel with $AA'$.

2024 Yasinsky Geometry Olympiad, 3

Let \( H \) be the orthocenter of an acute triangle \( ABC \), and let \( AT \) be the diameter of the circumcircle of this triangle. Points \( X \) and \( Y \) are chosen on sides \( AC \) and \( AB \), respectively, such that \( TX = TY \) and \( \angle XTY + \angle XAY = 90^\circ \). Prove that \( \angle XHY = 90^\circ \). [i] Proposed by Matthew Kurskyi[/i]

2021 Sharygin Geometry Olympiad, 9.2

A cyclic pentagon is given. Prove that the ratio of its area to the sum of the diagonals is not greater than the quarter of the circumradius.