This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2000 Iran MO (3rd Round), 2

Isosceles triangles $A_3A_1O_2$ and $A_1A_2O_3$ are constructed on the sides of a triangle $A_1A_2A_3$ as the bases, outside the triangle. Let $O_1$ be a point outside $\Delta A_1A_2A_3$ such that $\angle O_1A_3A_2 =\frac 12\angle A_1O_3A_2$ and $\angle O_1A_2A_3 =\frac 12\angle A_1O_2A_3$. Prove that $A_1O_1\perp O_2O_3$, and if $T$ is the projection of $O_1$ onto $A_2A_3$, then $\frac{A_1O_1}{O_2O_3} = 2\frac{O_1T}{A_2A_3}$.

2002 National Olympiad First Round, 29

In $\triangle ABC$, angle bisector ıf $\widehat{CAB}$ meets $BC$ at $L$, angle bisector of $\widehat{ABC}$ meets $AC$ at $N$. Lines $AL$ and $BN$ meet at $O$. If $|NL| = \sqrt 3$, what is$|ON| + |OL|$? $ \textbf{a)}\ 3\sqrt 3 \qquad\textbf{b)}\ 2\sqrt 3 \qquad\textbf{c)}\ 2 \qquad\textbf{d)}\ 3 \qquad\textbf{e)}\ 5 $

2020 Brazil Undergrad MO, Problem 1

Tags: calculus , limit , geometry
Let $R > 0$, be an integer, and let $n(R)$ be the number um triples $(x, y, z) \in \mathbb{Z}^3$ such that $2x^2+3y^2+5z^2 = R$. What is the value of $\lim_{ R \to \infty}\frac{n(1) + n(2) + \cdots + n(R)}{R^{3/2}}$?

2010 Contests, 2

Let $ABCD$ be a rectangle of centre $O$, such that $\angle DAC=60^{\circ}$. The angle bisector of $\angle DAC$ meets $DC$ at $S$. Lines $OS$ and $AD$ meet at $L$, and lines $BL$ and $AC$ meet at $M$. Prove that lines $SM$ and $CL$ are parallel.

2018 Argentina National Olympiad, 6

Let $ABCD$ be a parallelogram. An interior circle of the $ABCD$ is tangent to the lines $AB$ and $AD$ and intersects the diagonal $BD$ at $E$ and $F$. Prove that exists a circle that passes through $E$ and $F$ and is tangent to the lines $CB$ and $CD$.

2014 Iran MO (2nd Round), 2

Tags: geometry
Let $ABCD$ be a square. Let $N,P$ be two points on sides $AB, AD$, respectively such that $NP=NC$, and let $Q$ be a point on $AN$ such that $\angle QPN = \angle NCB$. Prove that \[ \angle BCQ = \dfrac{1}{2} \angle AQP .\]

MOAA Individual Speed General Rounds, 2019 Speed

[b]p1.[/b] What is $20\times 19 + 20 \div (2 - 7)$? [b]p2.[/b] Will has three spinners. The first has three equally sized sections numbered $1$, $2$, $3$; the second has four equally sized sections numbered $1$, $2$, $3$, $4$; and the third has five equally sized sections numbered $1$, $2$, $3$, $4$, $5$. When Will spins all three spinners, the probability that the same number appears on all three spinners is $p$. Compute $\frac{1}{p}$. [b]p3.[/b] Three girls and five boys are seated randomly in a row of eight desks. Let $p$ be the probability that the students at the ends of the row are both boys. If $p$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$. [b]p4.[/b] Jaron either hits a home run or strikes out every time he bats. Last week, his batting average was $.300$. (Jaron's batting average is the number of home runs he has hit divided by the number of times he has batted.) After hitting $10$ home runs and striking out zero times in the last week, Jaron has now raised his batting average to $.310$. How many home runs has Jaron now hit? [b]p5.[/b] Suppose that the sum $$\frac{1}{1 \cdot 4} +\frac{1}{4 \cdot 7}+ ...+\frac{1}{97 \cdot 100}$$ is expressible as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p6.[/b] Let $ABCD$ be a unit square with center $O$, and $\vartriangle OEF$ be an equilateral triangle with center $A$. Suppose that $M$ is the area of the region inside the square but outside the triangle and $N$ is the area of the region inside the triangle but outside the square, and let $x = |M -N|$ be the positive difference between $M$ and $N$. If $$x =\frac1 8(p -\sqrt{q})$$ for positive integers $p$ and $q$, find $p + q$. [b]p7.[/b] Find the number of seven-digit numbers such that the sum of any two consecutive digits is divisible by $3$. For example, the number $1212121$ satisfies this property. [b]p8.[/b] There is a unique positive integer $x$ such that $x^x$ has $703$ positive factors. What is $x$? [b]p9.[/b] Let $x$ be the number of digits in $2^{2019}$ and let $y$ be the number of digits in $5^{2019}$. Compute $x + y$. [b]p10.[/b] Let $ABC$ be an isosceles triangle with $AB = AC = 13$ and $BC = 10$. Consider the set of all points $D$ in three-dimensional space such that $BCD$ is an equilateral triangle. This set of points forms a circle $\omega$. Let $E$ and $F$ be points on $\omega$ such that $AE$ and $AF$ are tangent to $\omega$. If $EF^2$ can be expressed in the form $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, determine $m + n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 All-Russian Olympiad, 4

A finite set of points $X$ and an equilateral triangle $T$ are given on a plane. Suppose that every subset $X'$ of $X$ with no more than $9$ elements can be covered by two images of $T$ under translations. Prove that the whole set $X$ can be covered by two images of $T$ under translations.

1966 Leningrad Math Olympiad, grade 8

[b]8.1 / 7.4[/b] What number needs to be put in place * so that the next the problem had a unique solution: “There are n straight lines on the plane, intersecting at * points. Find n.” ? [b]8.2 / 7.3[/b] Prove that for any natural number $n$ the number $ n(2n+1)(3n+1)...(1966n + 1) $ is divisible by every prime number less than $1966$. [b]8.3 / 7.6[/b] There are $n$ points on the plane so that any triangle with vertices at these points has an area less than $1$. Prove that all these points can be enclosed in a triangle of area $4$. [b]8.4[/b] Prove that the sum of all divisors of the number $n^2$ is odd. [b]8.5[/b] A quadrilateral has three obtuse angles. Prove that the larger of its two diagonals emerges from the vertex of an acute angle. [b]8.6[/b] Numbers $x_1, x_2, . . . $ are constructed according to the following rule: $$x_1 = 2, x_2 = (x^5_1 + 1)/5x_1, x_3 = (x^5_2 + 1)/5x_2, ...$$ Prove that no matter how much we continued this construction, all the resulting numbers will be no less $1/5$ and no more than $2$. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988082_1966_leningrad_math_olympiad]here[/url].

2004 AMC 12/AHSME, 10

An [i]annulus[/i] is the region between two concentric circles. The concentric circles in the figure have radii $ b$ and $ c$, with $ b > c$. Let $ \overline{OX}$ be a radius of the larger circle, let $ \overline{XZ}$ be tangent to the smaller circle at $ Z$, and let $ \overline{OY}$ be the radius of the larger circle that contains $ Z$. Let $ a \equal{} XZ$, $ d \equal{} YZ$, and $ e \equal{} XY$. What is the area of the annulus? $ \textbf{(A)}\ \pi a^2 \qquad \textbf{(B)}\ \pi b^2 \qquad \textbf{(C)}\ \pi c^2 \qquad \textbf{(D)}\ \pi d^2 \qquad \textbf{(E)}\ \pi e^2$ [asy]unitsize(1.4cm); defaultpen(linewidth(.8pt)); dotfactor=3; real r1=1.0, r2=1.8; pair O=(0,0), Z=r1*dir(90), Y=r2*dir(90); pair X=intersectionpoints(Z--(Z.x+100,Z.y), Circle(O,r2))[0]; pair[] points={X,O,Y,Z}; filldraw(Circle(O,r2),mediumgray,black); filldraw(Circle(O,r1),white,black); dot(points); draw(X--Y--O--cycle--Z); label("$O$",O,SSW,fontsize(10pt)); label("$Z$",Z,SW,fontsize(10pt)); label("$Y$",Y,N,fontsize(10pt)); label("$X$",X,NE,fontsize(10pt)); defaultpen(fontsize(8pt)); label("$c$",midpoint(O--Z),W); label("$d$",midpoint(Z--Y),W); label("$e$",midpoint(X--Y),NE); label("$a$",midpoint(X--Z),N); label("$b$",midpoint(O--X),SE);[/asy]

2025 Kyiv City MO Round 2, Problem 4

Tags: geometry
Let \( H \) be the orthocenter, and \( O \) be the circumcenter of \( \triangle ABC \). The line \( AH \) intersects the circumcircle of \( \triangle ABC \) at point \( N \) for the second time. The circumcircle of \( \triangle BOC \), with center at point \( Q \), intersects the line \( OH \) at point \( X \) for the second time. Prove that the points \( O, Q, N, X \) lie on the same circle. [i]Proposed by Matthew Kurskyi[/i]

2010 Sharygin Geometry Olympiad, 3

Points $X,Y,Z$ lies on a line (in indicated order). Triangles $XAB$, $YBC$, $ZCD$ are regular, the vertices of the first and the third triangle are oriented counterclockwise and the vertices of the second are opposite oriented. Prove that $AC$, $BD$ and $XY$ concur. V.A.Yasinsky

2005 France Team Selection Test, 2

Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle). Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.

2023 AMC 10, 15

Tags: circles , geometry
An even number of circles are nested, starting with a radius of $1$ and increasing by $1$ each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius $2$ but outside the circle of radius $1.$ An example showing $8$ circles is displayed below. What is the least number of circles needed to make the total shaded area at least $2023\pi$?

Champions Tournament Seniors - geometry, 2005.2

Given a triangle $ABC$, the line passing through the vertex $A$ symmetric to the median $AM$ wrt the line containing the bisector of the angle $\angle BAC$ intersects the circle circumscribed around the triangle $ABC$ at points $A$ and $K$. Let $L$ be the midpoint of the segment $AK$. Prove that $\angle BLC=2\angle BAC$.

2021 Baltic Way, 13

Tags: geometry
Let $D$ be the foot of the $A$-altitude of an acute triangle $ABC$. The internal bisector of the angle $DAC$ intersects $BC$ at $K$. Let $L$ be the projection of $K$ onto $AC$. Let $M$ be the intersection point of $BL$ and $AD$. Let $P$ be the intersection point of $MC$ and $DL$. Prove that $PK \perp AB$.

2022 Korea Junior Math Olympiad, 6

Let $ABC$ be a isosceles triangle with $\overline{AB}=\overline{AC}$. Let $D(\neq A, C)$ be a point on the side $AC$, and circle $\Omega$ is tangent to $BD$ at point $E$, and $AC$ at point $C$. Denote by $F(\neq E)$ the intersection of the line $AE$ and the circle $\Omega$, and $G(\neq a)$ the intersection of the line $AC$ and the circumcircle of the triangle $ABF$. Prove that points $D, E, F,$ and $G$ are concyclic.

2014 Contests, 3

Tags: geometry
Let $A_0A_1A_2$ be a scalene triangle. Find the locus of the centres of the equilateral triangles $X_0X_1X_2$ , such that $A_k$ lies on the line $X_{k+1}X_{k+2}$ for each $k=0,1,2$ (with indices taken modulo $3$).

2014 Sharygin Geometry Olympiad, 13

Let $AC$ be a fixed chord of a circle $\omega$ with center $O$. Point $B$ moves along the arc $AC$. A fixed point $P$ lies on $AC$. The line passing through $P$ and parallel to $AO$ meets $BA$ at point $A_1$, the line passing through $P$ and parallel to $CO$ meets $BC$ at point $C_1$. Prove that the circumcenter of triangle $A_1BC_1$ moves along a straight line.

2006 India National Olympiad, 5

In a cyclic quadrilateral $ABCD$, $AB=a$, $BC=b$, $CD=c$, $\angle ABC = 120^\circ$ and $\angle ABD = 30^\circ$. Prove that (1) $c \ge a + b$; (2) $|\sqrt{c + a} - \sqrt{c + b} | = \sqrt{c - a - b}$.

2001 India Regional Mathematical Olympiad, 5

In a triangle $ABC$, $D$ is a point on $BC$ such that $AD$ is the internal bisector of $\angle A$. Suppose $\angle B = 2 \angle C$ and $CD =AB$. prove that $\angle A = 72^{\circ}$.

1977 Chisinau City MO, 146

Prove that $n$ ($\ge 4$) points of the plane are vertices of a convex $n$-gon if and only if any $4$ of them are vertices of a convex quadrilateral.

2005 AMC 12/AHSME, 25

Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex? $ \textbf{(A)}\ \frac {5}{256} \qquad \textbf{(B)}\ \frac {21}{1024} \qquad \textbf{(C)}\ \frac {11}{512} \qquad \textbf{(D)}\ \frac {23}{1024} \qquad \textbf{(E)}\ \frac {3}{128}$

2024/2025 TOURNAMENT OF TOWNS, P3

A point $K$ is chosen on the side $CD$ of a rectangle $ABCD$. From the vertex $B$, the perpendicular $BH$ is dropped to the segment $AK$. The segments $AK$ and $BH$ divide the rectangle into three parts such that each of them has the inscribed circle (see figure). Prove that if the circles tangent to $CD$ are equal then the third circle is also equal to them.

2011 German National Olympiad, 2

The price for sending a packet (a rectangular cuboid) is directly proportional to the sum of its length, width, and height. Is it possible to reduce the cost of sending a packet by putting it into a cheaper packet?