Found problems: 25757
2017 China Girls Math Olympiad, 7
This is a very classical problem.
Let the $ABCD$ be a cyclic quadrilateral with circumcircle $\omega_1$.Lines $AC$ and $BD$ intersect at point $E$,and lines $AD$,$BC$ intersect at point $F$.Circle $\omega_2$ is tangent to segments $EB,EC$ at points $M,N$ respectively,and intersects with circle $\omega_1$ at points $Q,R$.Lines $BC,AD$ intersect line $MN$ at $S,T$ respectively.Show that $Q,R,S,T$ are concyclic.
1992 Spain Mathematical Olympiad, 2
Given two circles of radii $r$ and $r'$ exterior to each other, construct a line parallel to a given line and intersecting the two circles in chords with the sum of lengths $\ell$.
1984 Brazil National Olympiad, 3
Given a regular dodecahedron of side $a$. Take two pairs of opposite faces: $E, E' $ and $F, F'$. For the pair $E, E'$ take the line joining the centers of the faces and take points $A$ and $C$ on the line each a distance $m$ outside one of the faces. Similarly, take $B$ and $D$ on the line joining the centers of $F, F'$ each a distance $m$ outside one of the faces. Show that $ABCD$ is a rectangle and find the ratio of its side lengths.
2002 Stanford Mathematics Tournament, 2
Upon cutting a certain rectangle in half, you obtain two rectangles that are scaled down versions of the original. What is the ratio of the longer side length to the shorter side length?
2021-IMOC, G7
The incircle of triangle $ABC$ tangents $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Let the tangents of $E$, $F$ with respect to $\odot(AEF)$ intersect at $P$, and $X$ be a point on $BC$ such that $EF$, $DP$, $AX$ are concurrent. Define $Q$, $Y$ and $R$, $Z$ similarly. Show that $X$, $Y$, $Z$ are collinear.
2004 Purple Comet Problems, 17
We want to paint some identically-sized cubes so that each face of each cube is painted a solid color and each cube is painted with six different colors. If we have seven different colors to choose from, how many distinguishable cubes can we produce?
1982 All Soviet Union Mathematical Olympiad, 348
The $KLMN$ tetrahedron (triangle pyramid) vertices are situated inside or on the faces or on the edges of the $ABCD$ tetrahedron. Prove that perimeter of $KLMN$ is less than $4/3$ perimeter of $ABCD$.
1985 Federal Competition For Advanced Students, P2, 3
A line meets the lines containing sides $ BC,CA,AB$ of a triangle $ ABC$ at $ A_1,B_1,C_1,$ respectively. Points $ A_2,B_2,C_2$ are symmetric to $ A_1,B_1,C_1$ with respect to the midpoints of $ BC,CA,AB,$ respectively. Prove that $ A_2,B_2,$ and $ C_2$ are collinear.
Durer Math Competition CD Finals - geometry, 2011.C3
Given a circle with four circles that intersect in pairs as shown in the figure. The "internal" the points of intersection are $A, B, C$ and $D$, while the ‘outer’ points of intersection are $E, F, G$ and $H$. Prove that the quadrilateral $ABCD$ is cyclic if also the quadrilateral $EFGH$ is also cyclic.
[img]https://cdn.artofproblemsolving.com/attachments/0/0/6a369c93e37eefd57775fd8586bdff393e1914.png[/img]
2016 IMO, 1
Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.
2009 National Olympiad First Round, 13
In trapezoid $ ABCD$, $ AB \parallel CD$, $ \angle CAB < 90^\circ$, $ AB \equal{} 5$, $ CD \equal{} 3$, $ AC \equal{} 15$. What are the sum of different integer values of possible $ BD$?
$\textbf{(A)}\ 101 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 115 \qquad\textbf{(D)}\ 125 \qquad\textbf{(E)}\ \text{None}$
2014 AMC 12/AHSME, 24
Let $ABCDE$ be a pentagon inscribed in a circle such that $AB=CD=3$, $BC=DE=10$, and $AE=14$. The sum of the lengths of all diagonals of $ABCDE$ is equal to $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
$\textbf{(A) }129\qquad
\textbf{(B) }247\qquad
\textbf{(C) }353\qquad
\textbf{(D) }391\qquad
\textbf{(E) }421\qquad$
2017 VTRMC, 4
Let $P$ be an interior point of a triangle of area $T$. Through the point $P$, draw lines parallel to the three sides, partitioning the triangle into three triangles and three parallelograms. Let $a$, $b$ and $c$ be the areas of the three triangles. Prove that $ \sqrt { T } = \sqrt { a } + \sqrt { b } + \sqrt { c } $.
1986 IMO Longlists, 47
Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.
2016 China Team Selection Test, 2
Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$.
2002 Moldova Team Selection Test, 3
A triangle $ABC$ is inscribed in a circle $G$. For any point $M$ inside the triangle, $A_1$ denotes the intersection of the ray $AM$ with $G$. Find the locus of point $M$ for which $\frac{BM\cdot CM}{MA_1}$ is minimal, and find this minimum value.
1988 IMO Longlists, 40
[b]i.)[/b] Consider a circle $K$ with diameter $AB;$ with circle $L$ tangent to $AB$ and to $K$ and with a circle $M$ tangent to circle $K,$ circle $L$ and $AB.$ Calculate the ration of the area of circle $K$ to the area of circle $M.$
[b]ii.)[/b] In triangle $ABC, AB = AC$ and $\angle CAB = 80^{\circ}.$ If points $D,E$ and $F$ lie on sides $BC, AC$ and $AB,$ respectively and $CE = CD$ and $BF = BD,$ then find the size of $\angle EDF.$
2019 Indonesia Juniors, day 2
P6. Determine all integer pairs $(x, y)$ satisfying the following system of equations.
\[ \begin{cases}
x + y - 6 &= \sqrt{2x + y + 1} \\
x^2 - x &= 3y + 5
\end{cases} \]
P7. Determine the sum of all (positive) integers $n \leq 2019$ such that $1^2 + 2^2 + 3^2 + \cdots + n^2$ is an odd number and $1^1 + 2^2 + 3^3 + \cdots + n^n$ is also an odd number.
P8. Two quadrilateral-based pyramids where the length of all its edges are the same, have their bases coincide, forming a new 3D figure called "8-plane" (octahedron). If the volume of such "8-plane" (octahedron) is $a^3\sqrt{2}$ cm$^3$, determine the volume of the largest sphere that can be fit inside such "8-plane" (octahedron).
P9. Six-digit numbers $\overline{ABCDEF}$ with distinct digits are arranged from the digits 1, 2, 3, 4, 5, 6, 7, 8 with the rule that the sum of the first three numbers and the sum of the last three numbers are the same. Determine the probability that such arranged number has the property that either the first or last three digits (might be both) form an arithmetic sequence or a geometric sequence.
[hide=Remarks (Answer spoiled)]It's a bit ambiguous whether the first or last three digits mentioned should be in that order, or not. If it should be in that order, the answer to this problem would be $\frac{1}{9}$, whereas if not, it would be $\frac{1}{3}$. Some of us agree that the correct interpretation should be the latter (which means that it's not in order) and the answer should be $\frac{1}{3}$. However since this is an essay problem, your interpretation can be written in your solution as well and it's left to the judges' discretion to accept your interpretation, or not. This problem is very bashy.[/hide]
P10. $X_n$ denotes the number which is arranged by the digit $X$ written (concatenated) $n$ times. As an example, $2_{(3)} = 222$ and $5_{(2)} = 55$. For $A, B, C \in \{1, 2, \ldots, 9\}$ and $1 \leq n \leq 2019$, determine the number of ordered quadruples $(A, B, C, n)$ satisfying:
\[ A_{(2n)} = 2 \left ( B_{(n)} \right ) + \left ( C_{(n)} \right )^2. \]
Kyiv City MO Seniors Round2 2010+ geometry, 2012.10.4
In the triangle $ABC$ with sides $BC> AC> AB$ the angles between altiude and median drawn from one vertex are considered. Find out at which vertex this angle is the largest of the three.
(Rozhkova Maria)
2016 Junior Balkan Team Selection Tests - Romania, 4
Let $ABC$ be an acute triangle with $AB<AC$ and $D,E,F$ be the contact points of the incircle $(I)$ with $BC,AC,AB$. Let $M,N$ be on $EF$ such that $MB \perp BC$ and $NC \perp BC$. $MD$ and $ND$ intersect the $(I)$ in $D$ and $Q$. Prove that $DP=DQ$.
2000 ITAMO, 2
Let $ABCD$ be a convex quadrilateral, and write $\alpha=\angle DAB$, $\beta=\angle ADB$, $\gamma=\angle ACB$, $\delta= \angle DBC$ and $\epsilon=\angle DBA$. Assuming that $\alpha<\pi/2$, $\beta+\gamma=\pi /2$, and $\delta+2\epsilon=\pi$, prove that $(DB+BC)^2=AD^2+AC^2$.
2000 Harvard-MIT Mathematics Tournament, 13
Let $P_1, P_2,..., P_n$ be a convex $n$-gon. If all lines $P_iP_j$ are joined, what is the maximum possible number of intersections in terms of $n$ obtained from strictly inside the polygon?
1980 Polish MO Finals, 1
Compute the area of an octagon inscribed in a circle, whose four sides have length $1$ and the other four sides have length $2$.
2013 NIMO Summer Contest, 13
In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$.
[i]Proposed by Lewis Chen[/i]
2015 Serbia National Math Olympiad, 1
Consider circle inscribed quadriateral $ABCD$. Let $M,N,P,Q$ be midpoints of sides $DA,AB,BC,CD$.Let $E$ be the point of intersection of diagonals. Let $k1,k2$ be circles around $EMN$ and $EPQ$ . Let $F$ be point of intersection of $k1$ and $k2$ different from $E$. Prove that $EF$ is perpendicular to $AC$.