Found problems: 25757
2021 JHMT HS, 2
A triangle is [i]nondegenerate[/i] if its three vertices are not collinear. A particular nondegenerate triangle $\triangle JHU$ has side lengths $x,$ $y,$ and $z,$ and its angle measures, in degrees, are all integers. If there exists a nondegenerate triangle with side lengths $x^2,$ $y^2,$ and $z^2,$ then what is the largest possible angle measure in the original triangle $\triangle JHU,$ in degrees?
2023 Sharygin Geometry Olympiad, 12
Let $ABC$ be a triangle with obtuse angle $B$, and $P, Q$ lie on $AC$ in such a way that $AP = PB, BQ = QC$. The circle $BPQ$ meets the sides $AB$ and $BC$ at points $N$ and $M$ respectively.
$\qquad\textbf{(a)}$ (grades 8-9) Prove that the distances from the common point $R$ of $PM$ and $NQ$ to $A$ and $C$ are equal.
$\qquad\textbf{(b)}$ (grades 10-11) Let $BR$ meet $AC$ at point $S$. Prove that $MN \perp OS$, where $O$ is the circumcenter of $ABC$.
Kvant 2021, M2672
Let the inscribed circle $\omega$ of the triangle $ABC$ have a center $I{}$ and touch the sides $BC, CA$ and $AB$ at points $D, E$ and $F{}$ respectively. Let $M{}$ and $N{}$ be points on the straight line $EF$ such that $BM \parallel AC$ and $CN \parallel AB$. Let $P{}$ and $Q{}$ be points on the segments $DM{}$ and $DN{}$, respectively, such that $BP \parallel CQ$. Prove that the intersection point of the lines $PF$ and $QE$ lies on $\omega$.
[i]Proposed by Don Luu (Vietnam)[/i]
2005 Sharygin Geometry Olympiad, 10.5
Two circles of radius $1$ intersect at points $X, Y$, the distance between which is also equal to $1$. From point $C$ of one circle, tangents $CA, CB$ are drawn to the other. Line $CB$ will cross the first circle a second time at point $A'$. Find the distance $AA'$.
2006 MOP Homework, 6
Suppose there are $18$ light houses on the Mexican gulf. Each of the lighthouses lightens an angle with size $20$ degrees. Prove that we can choose the directions of the lighthouses such that the whole gulf is lightened.
2010 ELMO Shortlist, 5
Determine all (not necessarily finite) sets $S$ of points in the plane such that given any four distinct points in $S$, there is a circle passing through all four or a line passing through some three.
[i]Carl Lian.[/i]
1991 China Team Selection Test, 3
All edges of a polyhedron are painted with red or yellow. For an angle of a facet, if the edges determining it are of different colors, then the angle is called [i]excentric[/i]. The[i] excentricity [/i]of a vertex $A$, namely $S_A$, is defined as the number of excentric angles it has. Prove that there exist two vertices $B$ and $C$ such that $S_B + S_C \leq 4$.
2003 Tournament Of Towns, 3
Point $M$ is chosen in triangle $ABC$ so that the radii of the circumcircles of triangles $AMC, BMC$, and $BMA$ are no smaller than the radius of the circumcircle of $ABC$. Prove that all four radii are equal.
1995 Rioplatense Mathematical Olympiad, Level 3, 2
In a circle of center $O$ and radius $r$, a triangle $ABC$ of orthocenter $H$ is inscribed. It is considered a triangle $A'B'C'$ whose sides have by length the measurements of the segments $AB, CH$ and $2r$. Determine the triangle $ABC$ so that the area of the triangle $A'B'C'$ is maximum.
2011 USA Team Selection Test, 1
In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC, CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and $Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$. Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HR$.
[i]Proposed by Zuming Feng[/i]
2008 Harvard-MIT Mathematics Tournament, 7
Let $ C_1$ and $ C_2$ be externally tangent circles with radius 2 and 3, respectively. Let $ C_3$ be a circle internally tangent to both $ C_1$ and $ C_2$ at points $ A$ and $ B$, respectively. The tangents to $ C_3$ at $ A$ and $ B$ meet at $ T$, and $ TA \equal{} 4$. Determine the radius of $ C_3$.
1985 Traian Lălescu, 1.4
Two planes, $ \alpha $ and $ \beta, $ form a dihedral angle of $ 30^{\circ} , $ and their intersection is the line $ d. $ A point $ A $ situated at the exterior of this angle projects itself in $ P\not\in d $ on $ \alpha , $ and in $ Q\not\in d $ on $ \beta $ such that $ AQ<AP. $ Name $ B $ the projection of $ A $ upon $ d. $
[b]a)[/b] Are $ A,B,P,Q, $ coplanar?
[b]b)[/b] Knowing that a perpendicular to $ \beta $ make with $ AB $ an angle of $ 60^{\circ} , $ and $ AB=4, $ find the area of $ BPQ. $
1993 Spain Mathematical Olympiad, 3
Prove that in every triangle the diameter of the incircle is not greater than the radius of the circumcircle.
2022 Harvard-MIT Mathematics Tournament, 5
Let triangle $ABC$ be such that $AB = AC = 22$ and $BC = 11$. Point $D$ is chosen in the interior of the triangle such that $AD = 19$ and $\angle ABD + \angle ACD = 90^o$ . The value of $BD^2 + CD^2$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Compute $100a + b$.
2016 IOM, 4
A convex quadrilateral $ABCD$ has right angles at $A$ and $C$. A point $E$ lies on the extension of the side $AD$ beyond $D$ so that$\angle ABE =\angle ADC$. The point $K$ is symmetric to the point $C$ with respect to point $A$. Prove that$\angle ADB =\angle AKE$ .
1983 Tournament Of Towns, (046) 3
Construct a quadrilateral given its side lengths and the length of the segment joining the midpoints of its diagonals.
(IZ Titovich)
2018 AMC 12/AHSME, 22
The solutions to the equations $z^2=4+4\sqrt{15}i$ and $z^2=2+2\sqrt 3i,$ where $i=\sqrt{-1},$ form the vertices of a parallelogram in the complex plane. The area of this parallelogram can be written in the form $p\sqrt q-r\sqrt s,$ where $p,$ $q,$ $r,$ and $s$ are positive integers and neither $q$ nor $s$ is divisible by the square of any prime number. What is $p+q+r+s?$
$\textbf{(A) } 20 \qquad
\textbf{(B) } 21 \qquad
\textbf{(C) } 22 \qquad
\textbf{(D) } 23 \qquad
\textbf{(E) } 24 $
2016 PUMaC Geometry A, 8
Let $\vartriangle ABC$ have side lengths $AB = 4,BC = 6,CA = 5$. Let $M$ be the midpoint of $BC$ and let $P$ be the point on the circumcircle of $\vartriangle ABC$ such that $\angle MPA = 90^o$. Let $D$ be the foot of the altitude from $B$ to $AC$, and let $E$ be the foot of the altitude from $C$ to $AB$. Let $PD$ and $PE$ intersect line $BC$ at $X$ and $Y$ , respectively. Compute the square of the area of $\vartriangle AXY$ .
2000 Harvard-MIT Mathematics Tournament, 3
A twelve foot tree casts a five foot shadow. How long is Henry’s shadow (at the same time of day) if he is five and a half feet tall?
2007 AMC 10, 18
A circle of radius $ 1$ is surrounded by $ 4$ circles of radius $ r$ as shown. What is $ r$?
[asy]defaultpen(linewidth(.9pt));
real r = 1 + sqrt(2);
pair A = dir(45)*(r + 1);
pair B = dir(135)*(r + 1);
pair C = dir(-135)*(r + 1);
pair D = dir(-45)*(r + 1);
draw(Circle(origin,1));
draw(Circle(A,r));draw(Circle(B,r));draw(Circle(C,r));draw(Circle(D,r));
draw(A--(dir(45)*r + A));
draw(B--(dir(45)*r + B));
draw(C--(dir(45)*r + C));
draw(D--(dir(45)*r + D));
draw(origin--(dir(25)));
label("$r$",midpoint(A--(dir(45)*r + A)), SE);
label("$r$",midpoint(B--(dir(45)*r + B)), SE);
label("$r$",midpoint(C--(dir(45)*r + C)), SE);
label("$r$",midpoint(D--(dir(45)*r + D)), SE);
label("$1$",origin,W);[/asy]$ \textbf{(A)}\ \sqrt {2}\qquad \textbf{(B)}\ 1 \plus{} \sqrt {2}\qquad \textbf{(C)}\ \sqrt {6}\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ 2 \plus{} \sqrt {2}$
2011 Paraguay Mathematical Olympiad, 5
In a rectangle triangle, let $I$ be its incenter and $G$ its geocenter. If $IG$ is parallel to one of the catheti and measures $10 cm$, find the lengths of the two catheti of the triangle.
2021 Bangladesh Mathematical Olympiad, Problem 10
$A_1A_2A_3A_4A_5A_6A_7A_8$ is a regular octagon. Let $P$ be a point inside the octagon such that the distances from $P$ to $A_1A_2, A_2A_3$ and $A_3A_4$ are $24, 26$ and $27$ respectively. The length of $A_1A_2$ can be written as $a \sqrt{b} -c$, where $a,b$ and $c$ are positive integers and $b$ is not divisible by any square number other than $1$. What is the value of $(a+b+c)$?
2023 Chile National Olympiad, 3
Let $\vartriangle ABC$ be an equilateral triangle with side $1$. $1011$ points $P_1$, $P_2$, $P_3$, $...$, $P_{1011}$ on the side $AC$ and $1011$ points $Q_1$, $Q_2$, $Q_3$, $...$ ,$ Q_{1011}$ on side AB (see figure) in such a way as to generate $2023$ triangles of equal area. Find the length of the segment $AP_{1011}$.
[img]https://cdn.artofproblemsolving.com/attachments/f/6/fea495c16a0b626e0c3882df66d66011a1a3af.png[/img]
PS. Harder version of [url=https://artofproblemsolving.com/community/c4h3323135p30741470]2023 Chile NMO L1 P3[/url]
2014 Dutch IMO TST, 3
Let $H$ be the orthocentre of an acute triangle $ABC$. The line through $A$ perpendicular to $AC$ and the line through $B$ perpendicular to $BC$ intersect in $D$. The circle with centre $C$ through $H$ intersects the circumcircle of triangle $ABC$ in the points $E$ and $F$. Prove that $|DE| = |DF| = |AB|$.
1968 Yugoslav Team Selection Test, Problem 3
Each side of a triangle $ABC$ is divided into three equal parts, and the middle segment in each of the sides is painted green. In the exterior of $\triangle ABC$ three equilateral triangles are constructed, in such a way that the three green segments are sides of these triangles. Denote by $A',B',C'$ the vertices of these new equilateral triangles that don’t belong to the edges of $\triangle ABC$, respectively. Let $A'',B'',C''$ be the points symmetric to $A',B',C'$ with respect to $BC,CA,AB$.
(a) Prove that $\triangle A'B'C'$ and $\triangle A''B''C''$ are equilateral.
(b) Prove that $ABC,A'B'C'$, and $A''B''C''$ have a common centroid.