This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 Argentina Cono Sur TST, 5

Let $ABC$ be a triangle, and $K$ and $L$ be points on $AB$ such that $\angle ACK = \angle KCL = \angle LCB$. Let $M$ be a point in $BC$ such that $\angle MKC = \angle BKM$. If $ML$ is the angle bisector of $\angle KMB$, find $\angle MLC$.

2005 Bosnia and Herzegovina Junior BMO TST, 4

The sum of the angles on the bigger base of a trapezoid is $90^o$. Prove that the line segment whose ends are the midpoints of the bases, is equal to the line segment whose ends are the midpoints of the diagonals.

2010 Rioplatense Mathematical Olympiad, Level 3, 2

Tags: geometry , ratio
Acute triangle $ABP$, where $AB > BP$, has altitudes $BH$, $PQ$, and $AS$. Let $C$ denote the intersection of lines $QS$ and $AP$, and let $L$ denote the intersection of lines $HS$ and $BC$. If $HS = SL$ and $HL$ is perpendicular to $BC$, find the value of $\frac{SL}{SC}$.

2018 AIME Problems, 9

Octagon $ABCDEFGH$ with side lengths $AB = CD = EF = GH = 10$ and $BC= DE = FG = HA = 11$ is formed by removing four $6-8-10$ triangles from the corners of a $23\times 27$ rectangle with side $\overline{AH}$ on a short side of the rectangle, as shown. Let $J$ be the midpoint of $\overline{HA}$, and partition the octagon into $7$ triangles by drawing segments $\overline{JB}$, $\overline{JC}$, $\overline{JD}$, $\overline{JE}$, $\overline{JF}$, and $\overline{JG}$. Find the area of the convex polygon whose vertices are the centroids of these $7$ triangles. [asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("$A$", A, W*r); label("$B$", B, S*r); label("$C$", C, S*r); label("$D$", D, E*r); label("$E$", EE, E*r); label("$F$", F, N*r); label("$G$", G, N*r); label("$H$", H, W*r); label("$J$", J, W*r); [/asy]

1994 Argentina National Olympiad, 4

Tags: rectangle , area , geometry
A rectangle is divided into $9$ small rectangles if by parallel lines to its sides, as shown in the figure. [img]https://cdn.artofproblemsolving.com/attachments/e/d/1fd545862a3c7950249ec54a631c74e59fb9ed.png[/img] The four numbers written indicate the areas of the four corresponding rectangles. Prove that the total area of the rectangle is greater than or equal to $90$.

1938 Moscow Mathematical Olympiad, 038

In space $4$ points are given. How many planes equidistant from these points are there? Consider separately (a) the generic case (the points given do not lie on a single plane) and (b) the degenerate cases.

2012 Vietnam Team Selection Test, 1

Consider a circle $(O)$ and two fixed points $B,C$ on $(O)$ such that $BC$ is not the diameter of $(O)$. $A$ is an arbitrary point on $(O)$, distinct from $B,C$. Let $D,J,K$ be the midpoints of $BC,CA,AB$, respectively, $E,M,N$ be the feet of perpendiculars from $A$ to $BC$, $B$ to $DJ$, $C$ to $DK$, respectively. The two tangents at $M,N$ to the circumcircle of triangle $EMN$ meet at $T$. Prove that $T$ is a fixed point (as $A$ moves on $(O)$).

2021 Saudi Arabia Training Tests, 10

Let $AB$ be a chord of the circle $(O)$. Denote M as the midpoint of the minor arc $AB$. A circle $(O')$ tangent to segment $AB$ and internally tangent to $(O)$. A line passes through $M$, perpendicular to $O'A$, $O'B$ and cuts $AB$ respectively at $C, D$. Prove that $AB = 2CD$.

2016 India IMO Training Camp, 1

Tags: geometry , triangle
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2017 BMT Spring, 9

Tags: geometry
Let $\vartriangle ABC$ be a triangle. Let $D$ be the point on $BC$ such that $DA$ is tangent to the circumcircle of $ABC$. Let $E$ be the point on the circumcircle of $ABC$ such that $DE$ is tangent to the circumcircle of $ABC$, but $E \ne A$. Let $F$ be the intersection of $AE$ and $BC$. Given that $BF/F C = 4/5$, find the maximum possible value for $\sin \angle ACB$/

2000 Junior Balkan Team Selection Tests - Romania, 2

Tags: geometry , perimeter , grid
In an urban area whose street plan is a grid, a person started walking from an intersection and turned right or left at every intersection he reached until he ended up in the same initial intersection. [b]a)[/b] Show that the number of intersections (not necessarily distinct) in which he were is equivalent to $ 1 $ modulo $ 4. $ [b]b)[/b] Enunciate and prove a reciprocal statement. [i]Marius Beceanu[/i]

2016 Saudi Arabia GMO TST, 2

Let $(O_1), (O_2)$ be given two circles intersecting at $A$ and $B$. The tangent lines of $(O_1)$ at $A, B$ intersect at $O$. Let $I$ be a point on the circle $(O_1)$ but outside the circle $(O_2)$. The lines $IA, IB$ intersect circle $(O_2)$ at $C, D$. Denote by $M$ the midpoint of $C D$. Prove that $I, M, O$ are collinear.

2014 IFYM, Sozopol, 1

Tags: geometry
A line $l$ passes through the center $O$ of an equilateral triangle $\Delta ABC$, which intersects $CA$ in $N$ and $BC$ in $M$. Prove that we can construct a triangle with $AM$,$BN$, and $MN$ such that the altitude to $MN$ (in this triangle) is constant when $l$ changes.

2017 Saudi Arabia BMO TST, 3

Let $ABCD$ be a cyclic quadrilateral and triangles $ACD, BCD$ are acute. Suppose that the lines $AB$ and $CD$ meet at $S$. Denote by $E$ the intersection of $AC, BD$. The circles $(ADE)$ and $(BC E)$ meet again at $F$. a) Prove that $SF \perp EF.$ b) The point $G$ is taken out side of the quadrilateral $ABCD$ such that triangle $GAB$ and $FDC$ are similar. Prove that $GA+ FB = GB + FA$

2016 Iranian Geometry Olympiad, 1

In trapezoid $ABCD$ with $AB || CD$, $\omega_1$ and $\omega_2$ are two circles with diameters $AD$ and $BC$, respectively. Let $X$ and $Y$ be two arbitrary points on $\omega_1$ and $\omega_2$, respectively. Show that the length of segment $XY$ is not more than half the perimeter of $ABCD$. [i]Proposed by Mahdi Etesami Fard[/i]

VII Soros Olympiad 2000 - 01, 8.4

Paint the maximum number of vertices of the cube red so that you cannot select three of the red vertices that form an equilateral triangle.

2015 Sharygin Geometry Olympiad, P14

Let $ABC$ be an acute-angled, nonisosceles triangle. Point $A_1, A_2$ are symmetric to the feet of the internal and the external bisectors of angle $A$ wrt the midpoint of $BC$. Segment $A_1A_2$ is a diameter of a circle $\alpha$. Circles $\beta$ and $\gamma$ are defined similarly. Prove that these three circles have two common points.

2025 Junior Balkan Team Selection Tests - Romania, P4

Tags: geometry
Let $ABCDEF$ be a convex hexagon, such that the triangles $ABC$ and $DEF$ are equilateral and the diagonals $AD, BE$ and $CF$ are concurrent. Prove that $AC\parallel DF$ or $BE=AD+CF.$

2008 Junior Balkan Team Selection Tests - Romania, 1

Consider the acute-angled triangle $ ABC$, altitude $ AD$ and point $ E$ - intersection of $ BC$ with diameter from $ A$ of circumcircle. Let $ M,N$ be symmetric points of $ D$ with respect to the lines $ AC$ and $ AB$ respectively. Prove that $ \angle{EMC} \equal{} \angle{BNE}$.

2016 Novosibirsk Oral Olympiad in Geometry, 5

In the parallelogram $CMNP$ extend the bisectors of angles $MCN$ and $PCN$ and intersect with extensions of sides PN and $MN$ at points $A$ and $B$, respectively. Prove that the bisector of the original angle $C$ of the the parallelogram is perpendicular to $AB$. [img]https://cdn.artofproblemsolving.com/attachments/f/3/fde8ef133758e06b1faf8bdd815056173f9233.png[/img]

1979 Vietnam National Olympiad, 3

$ABC$ is a triangle. Find a point $X$ on $BC$ such that : area $ABX$ / area $ACX$ = perimeter $ABX$ / perimeter $ACX$.

1970 IMO Shortlist, 6

In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$

2012 IMO Shortlist, G4

Let $ABC$ be a triangle with $AB \neq AC$ and circumcenter $O$. The bisector of $\angle BAC$ intersects $BC$ at $D$. Let $E$ be the reflection of $D$ with respect to the midpoint of $BC$. The lines through $D$ and $E$ perpendicular to $BC$ intersect the lines $AO$ and $AD$ at $X$ and $Y$ respectively. Prove that the quadrilateral $BXCY$ is cyclic.

2016 Harvard-MIT Mathematics Tournament, 3

The three points $A, B, C$ form a triangle. $AB=4, BC=5, AC=6$. Let the angle bisector of $\angle A$ intersect side $BC$ at $D$. Let the foot of the perpendicular from $B$ to the angle bisector of $\angle A$ be $E$. Let the line through $E$ parallel to $AC$ meet $BC$ at $F$. Compute $DF$.

1999 Korea Junior Math Olympiad, 4

$C$ is the unit circle in some plane. $R$ is a square with side $a$. $C$ is fixed and $R$ moves(without rotation) on the plane, in such a way that its center stays inside $C$(including boundaries). Find the maximum value of the area drawn by the trace of $R$.