This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2009 Miklós Schweitzer, 11

Denote by $ H_n$ the linear space of $ n\times n$ self-adjoint complex matrices, and by $ P_n$ the cone of positive-semidefinite matrices in this space. Let us consider the usual inner product on $ H_n$ \[ \langle A,B\rangle \equal{} {\rm tr} AB\qquad (A,B\in H_n)\] and its derived metric. Show that every $ \phi: P_n\to P_n$ isometry (that is a not necessarily surjective, distance preserving map with respect to the above metric) can be expressed as \[ \phi(A) \equal{} UAU^* \plus{} X\qquad (A\in H_n)\] or \[ \phi(A) \equal{} UA^TU^* \plus{} X\qquad (A\in H_n)\] where $ U$ is an $ n\times n$ unitary matrix, $ X$ is a positive-semidefinite matrix, and $ ^T$ and $ ^*$ denote taking the transpose and the adjoint, respectively.

2006 CentroAmerican, 1

For $0 \leq d \leq 9$, we define the numbers \[S_{d}=1+d+d^{2}+\cdots+d^{2006}\]Find the last digit of the number \[S_{0}+S_{1}+\cdots+S_{9}.\]

1982 USAMO, 5

$A,B$, and $C$ are three interior points of a sphere $S$ such that $AB$ and $AC$ are perpendicular to the diameter of $S$ through $A$, and so that two spheres can be constructed through $A$, $B$, and $C$ which are both tangent to $S$. Prove that the sum of their radii is equal to the radius of $S$.

2022 Thailand TSTST, 1

Tags: geometry
Let $ABCD$ be a parallelogram with $AC=BC.$ A point $P$ is chosen on the extension of ray $AB$ past $B.$ The circumcircle of $ACD$ meets the segment $PD$ again at $Q.$ The circumcircle of triangle $APQ$ meets the segment $PC$ at $R.$ Prove that lines $CD,AQ,BR$ are concurrent.

2000 Brazil Team Selection Test, Problem 1

Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$. [color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]

2002 National Olympiad First Round, 33

Tags: rhombus , geometry
Let $ABCD$ be a rhombus such that $m(\widehat{ABC}) = 40^\circ$. Let $E$ be the midpoint of $[BC]$ and $F$ be the foot of the perpendicular from $A$ to $DE$. What is $m(\widehat{DFC})$? $ \textbf{a)}\ 100^\circ \qquad\textbf{b)}\ 110^\circ \qquad\textbf{c)}\ 115^\circ \qquad\textbf{d)}\ 120^\circ \qquad\textbf{e)}\ 135^\circ $

2001 Czech-Polish-Slovak Match, 4

Distinct points $A$ and $B$ are given on the plane. Consider all triangles $ABC$ in this plane on whose sides $BC,CA$ points $D,E$ respectively can be taken so that (i) $\frac{BD}{BC}=\frac{CE}{CA}=\frac{1}{3}$; (ii) points $A,B,D,E$ lie on a circle in this order. Find the locus of the intersection points of lines $AD$ and $BE$.

2010 Korea - Final Round, 4

Given is a trapezoid $ ABCD$ where $ AB$ and $ CD$ are parallel, and $ A,B,C,D$ are clockwise in this order. Let $ \Gamma_1$ be the circle with center $ A$ passing through $ B$, $ \Gamma_2$ be the circle with center $ C$ passing through $ D$. The intersection of line $ BD$ and $ \Gamma_1$ is $ P$ $ ( \ne B,D)$. Denote by $ \Gamma$ the circle with diameter $ PD$, and let $ \Gamma$ and $ \Gamma_1$ meet at $ X$$ ( \ne P)$. $ \Gamma$ and $ \Gamma_2$ meet at $ Y$. If the circumcircle of triangle $ XBY$ and $ \Gamma_2$ meet at $ Q$, prove that $ B,D,Q$ are collinear.

1978 Chisinau City MO, 168

Find the largest possible number of intersection points of the diagonals of a convex $n$-gon.

2004 Rioplatense Mathematical Olympiad, Level 3, 3

In a convex hexagon $ABCDEF$, triangles $ACE$ and $BDF$ have the same circumradius $R$. If triangle $ACE$ has inradius $r$, prove that \[ \text{Area}(ABCDEF)\le\frac{R}{r}\cdot\text{Area}(ACE).\]

2002 Tournament Of Towns, 2

$\Delta ABC$ and its mirror reflection $\Delta A^{\prime}B^{\prime}C^{\prime}$ is arbitrarily placed on the plane. Prove the midpoints of $AA^{\prime},BB^{\prime},CC^{\prime}$ are collinear.

2005 Iran MO (3rd Round), 2

We define a relation between subsets of $\mathbb R ^n$. $A \sim B\Longleftrightarrow$ we can partition $A,B$ in sets $A_1,\dots,A_n$ and $B_1,\dots,B_n$(i.e $\displaystyle A=\bigcup_{i=1} ^n A_i,\ B=\bigcup_{i=1} ^n B_i, A_i\cap A_j=\emptyset,\ B_i\cap B_j=\emptyset$) and $A_i\simeq B_i$. Say the the following sets have the relation $\sim$ or not ? a) Natural numbers and composite numbers. b) Rational numbers and rational numbers with finite digits in base 10. c) $\{x\in\mathbb Q|x<\sqrt 2\}$ and $\{x\in\mathbb Q|x<\sqrt 3\}$ d) $A=\{(x,y)\in\mathbb R^2|x^2+y^2<1\}$ and $A\setminus \{(0,0)\}$

2015 Moldova Team Selection Test, 3

Tags: geometry
Consider an acute triangle $ABC$, points $E,F$ are the feet of the perpendiculars from $B$ and $C$ in $\triangle ABC$. Points $I$ and $J$ are the projections of points $F,E$ on the line $BC$, points $K,L$ are on sides $AB,AC$ respectively such that $IK \parallel AC$ and $JL \parallel AB$. Prove that the lines $IE$,$JF$,$KL$ are concurrent.

2022 EGMO, 6

Tags: circles , geometry
Let $ABCD$ be a cyclic quadrilateral with circumcenter $O$. Let the internal angle bisectors at $A$ and $B$ meet at $X$, the internal angle bisectors at $B$ and $C$ meet at $Y$, the internal angle bisectors at $C$ and $D$ meet at $Z$, and the internal angle bisectors at $D$ and $A$ meet at $W$. Further, let $AC$ and $BD$ meet at $P$. Suppose that the points $X$, $Y$, $Z$, $W$, $O$, and $P$ are distinct. Prove that $O$, $X$, $Y$, $Z$, $W$ lie on the same circle if and only if $P$, $X$, $Y$, $Z$, and $W$ lie on the same circle.

2005 All-Russian Olympiad, 1

Given a parallelogram $ABCD$ with $AB<BC$, show that the circumcircles of the triangles $APQ$ share a second common point (apart from $A$) as $P,Q$ move on the sides $BC,CD$ respectively s.t. $CP=CQ$.

2024 Belarus Team Selection Test, 3.1

Triangles $ABC$ and $DEF$, having a common incircle of radius $R$, intersect at points $X_1, X_2, \ldots , X_6$ and form six triangles (see the figure below). Let $r_1, r_2,\ldots, r_6$ be the radii of the inscribed circles of these triangles, and let $R_1, R_2, \ldots , R_6$ be the radii of the inscribed circles of the triangles $AX_1F, FX_2B, BX_3D, DX_4C, CX_5E$ and $EX_6A$ respectively. [img]https://i.ibb.co/BspgdHB/Image.jpg[/img] Prove that \[ \sum_{i=1}^{6} \frac{1}{r_i} < \frac{6}{R}+\sum_{i=1}^{6} \frac{1}{R_i} \] [i]U. Maksimenkau[/i]

2024 IFYM, Sozopol, 8

In space, there are \( 13 \) points, no four of which lie in the same plane. Three of the points are colored blue, and the triangle with these points as vertices will be called a [i]blue triangle[/i]. The remaining \( 10 \) points are colored red. We say that a triangle with three red vertices is [i]attached[/i] to the blue triangle if the boundary of the red triangle intersects the blue triangle (either in its interior or on its boundary) at exactly one point. Is it possible for the number of attached triangles to be \( 33 \)?

1952 Moscow Mathematical Olympiad, 225

From a point $C$, tangents $CA$ and $CB$ are drawn to a circle $O$. From an arbitrary point $N$ on the circle, perpendiculars $ND, NE, NF$ are drawn on $AB, CA$ and $CB$, respectively. Prove that the length of $ND$ is the mean proportional of the lengths of $NE$ and $NF$.

2017 India PRMO, 13

In a rectangle $ABCD, E$ is the midpoint of $AB, F$ is a point on $AC$ such that $BF$ is perpendicular to $AC$, and $FE$ perpendicular to $BD$. Suppose $BC = 8\sqrt3$. Find $AB$.

2009 Oral Moscow Geometry Olympiad, 6

To two circles $r_1$ and $r_2$, intersecting at points $A$ and $B$, their common tangent $CD$ is drawn ($C$ and $D$ are tangency points, respectively, point $B$ is closer to line $CB$ than $A$). Line passing through $A$ , intersects $r_1$ and $r_2$ for second time at points $K$ and $L$, respectively ($A$ lies between $K$ and $L$). Lines $KC$ and $LD$ intersect at point $P$. Prove that $PB$ is the symmedian of triangle $KPL$. (Yu. Blinkov)

2018 Hanoi Open Mathematics Competitions, 9

Let $ABC$ be acute, non-isosceles triangle, inscribed in the circle $(O)$. Let $D$ be perpendicular projection of $A$ onto $BC$, and $E, F$ be perpendicular projections of $D$ onto $CA,AB$ respectively. (a) Prove that $AO \perp EF$. (b) The line $AO$ intersects $DE,DF$ at $I,J$ respectively. Prove that $\vartriangle DIJ$ and $\vartriangle ABC$ are similar. (c) Prove that circumcenter of $\vartriangle DIJ$ is equidistant from $B$ and $C$

2004 Junior Balkan Team Selection Tests - Romania, 3

Tags: geometry
Let $V$ be a point in the exterior of a circle of center $O$, and let $T_1,T_2$ be the points where the tangents from $V$ touch the circle. Let $T$ be an arbitrary point on the small arc $T_1T_2$. The tangent in $T$ at the circle intersects the line $VT_1$ in $A$, and the lines $TT_1$ and $VT_2$ intersect in $B$. We denote by $M$ the intersection of the lines $TT_1$ and $AT_2$. Prove that the lines $OM$ and $AB$ are perpendicular.

2020 Bulgaria Team Selection Test, 1

In acute triangle $\triangle ABC$, $BC>AC$, $\Gamma$ is its circumcircle, $D$ is a point on segment $AC$ and $E$ is the intersection of the circle with diameter $CD$ and $\Gamma$. $M$ is the midpoint of $AB$ and $CM$ meets $\Gamma$ again at $Q$. The tangents to $\Gamma$ at $A,B$ meet at $P$, and $H$ is the foot of perpendicular from $P$ to $BQ$. $K$ is a point on line $HQ$ such that $Q$ lies between $H$ and $K$. Prove that $\angle HKP=\angle ACE$ if and only if $\frac{KQ}{QH}=\frac{CD}{DA}$.

2014 Iranian Geometry Olympiad (junior), P4

In a triangle ABC we have $\angle C = \angle A + 90^o$. The point $D$ on the continuation of $BC$ is given such that $AC = AD$. A point $E$ in the side of $BC$ in which $A$ doesn’t lie is chosen such that $\angle EBC = \angle A, \angle EDC = \frac{1}{2} \angle A$ . Prove that $\angle CED = \angle ABC$. by Morteza Saghafian

1977 IMO Longlists, 8

Tags: geometry
A hexahedron $ABCDE$ is made of two regular congruent tetrahedra $ABCD$ and $ABCE.$ Prove that there exists only one isometry $\mathbf Z$ that maps points $A, B, C, D, E$ onto $B, C, A, E, D,$ respectively. Find all points $X$ on the surface of hexahedron whose distance from $\mathbf Z(X)$ is minimal.