This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2025 Kosovo National Mathematical Olympiad`, P1

Tags: pentagon , easy , geometry
The pentagon $ABCDE$ below is such that the quadrilateral $ABCD$ is a square and $BC=DE$. What is the measure of the angle $\angle AEC$?

2018 IOM, 6

Tags: geometry , incircle
The incircle of a triangle $ABC$ touches the sides $BC$ and $AC$ at points $D$ and $E$, respectively. Suppose $P$ is the point on the shorter arc $DE$ of the incircle such that $\angle APE = \angle DPB$. The segments $AP$ and $BP$ meet the segment $DE$ at points $K$ and $L$, respectively. Prove that $2KL = DE$. [i]Dušan Djukić[/i]

1983 AIME Problems, 14

In the adjoining figure, two circles of radii 6 and 8 are drawn with their centers 12 units apart. At $P$, one of the points of intersection, a line is drawn in such a way that the chords $QP$ and $PR$ have equal length. Find the square of the length of $QP$. [asy]unitsize(2.5mm); defaultpen(linewidth(.8pt)+fontsize(12pt)); dotfactor=3; pair O1=(0,0), O2=(12,0); path C1=Circle(O1,8), C2=Circle(O2,6); pair P=intersectionpoints(C1,C2)[0]; path C3=Circle(P,sqrt(130)); pair Q=intersectionpoints(C3,C1)[0]; pair R=intersectionpoints(C3,C2)[1]; draw(C1); draw(C2); //draw(O2--O1); //dot(O1); //dot(O2); draw(Q--R); label("$Q$",Q,N); label("$P$",P,dir(80)); label("$R$",R,E); //label("12",waypoint(O1--O2,0.4),S);[/asy]

2023 Sharygin Geometry Olympiad, 23

An ellipse $\Gamma_1$ with foci at the midpoints of sides $AB$ and $AC$ of a triangle $ABC$ passes through $A$, and an ellipse $\Gamma_2$ with foci at the midpoints of $AC$ and $BC$ passes through $C$. Prove that the common points of these ellipses and the orthocenter of triangle $ABC$ are collinear.

1985 Greece National Olympiad, 1

Inside triangle $ABC$ consider random point $O$. Prove that: $$E_A \overrightarrow{OA}+E_B \overrightarrow{OB}+E_C\overrightarrow{OC}=\overrightarrow{O}$$ where $E_A,E_B,E_C$ the areas of triangle $BOC, COB, AOB$ respectively

2020 CHMMC Winter (2020-21), 9

Tags: geometry
Triangle $ABC$ has circumcenter $O$ and circumcircle $\omega$. Let $A_{\omega}$ be the point diametrically opposite $A$ on $\omega$, and let $H$ be the foot of the altitude from $A$ onto $BC$. Let $H_B$ and $H_C$ be the reflections of $H$ over $B$ and $C$, respectively. Point $P$ is the intersection of line $A_{\omega}B$ and the perpendicular of $BC$ at point $H_B$, and point $Q$ is the intersection of line $A_{\omega}C$ and the perpendicular of $CB$ at point $H_C$. The circles $\omega_1$ and $\omega_2$ have the respective centers $P$ and $Q$ and respective radii $PA$ and $QA$. Suppose that $\omega$, $\omega_1$, and $\omega_2$ intersect at another common point $X$. If $AO = \frac{\sqrt{105}}{5}$ and $AX = 4$, then $|AB - CA|^2$ can be written as $m - n\sqrt{p}$ for positive integers $m$ and $n$ and squarefree positive integer $p$. Find $m + n + p$. [i]Note: the reflection of a point $P$ over another point $Q \neq P$ is the point $P'$ such that $Q$ is the midpoint of $P$ and $P'$.[/i]

2024 Baltic Way, 14

Let $ABC$ be an acute triangle with circumcircle $\omega$. The altitudes $AD$, $BE$ and $CF$ of the triangle $ABC$ intersect at point $H$. A point $K$ is chosen on the line $EF$ such that $KH\parallel BC$. Prove that the reflection of $H$ in $KD$ lies on $\omega$.

Ukrainian TYM Qualifying - geometry, 2019.9

On the base $BC$ of the isosceles triangle $ABC$ chose a point $D$ and in each of the triangles $ABD$ and $ACD$ inscribe a circle. Then everything was wiped, leaving only two circles. It is known from which side of their line of centers the apex $A$ is located . Use a compass and ruler to restore the triangle $ABC$ , if we know that : a) $AD$ is angle bisector, b) $AD$ is median.

2021 Balkan MO Shortlist, G8

Let $ABC$ be a scalene triangle and let $I$ be its incenter. The projections of $I$ on $BC, CA$, and $AB$ are $D, E$ and $F$ respectively. Let $K$ be the reflection of $D$ over the line $AI$, and let $L$ be the second point of intersection of the circumcircles of the triangles $BFK$ and $CEK$. If $\frac{1}{3} BC = AC - AB$, prove that $DE = 2KL$.

2022 Azerbaijan EGMO/CMO TST, G1

Let $ABC$ be an isosceles triangle with $AC = BC$ and circumcircle $k$. The point $D$ lies on the shorter arc of $k$ over the chord $BC$ and is different from $B$ and $C$. Let $E$ denote the intersection of $CD$ and $AB$. Prove that the line through $B$ and $C$ is a tangent of the circumcircle of the triangle $BDE$. (Karl Czakler)

2021 ABMC., 2021 Oct

[b]p1.[/b] How many perfect squares are in the set: $\{1, 2, 4, 9, 10, 16, 17, 25, 36, 49\}$? [b]p2.[/b] If $a \spadesuit b = a^b - ab - 5$, what is the value of $2 \spadesuit 11$? [b]p3.[/b] Joe can catch $20$ fish in $5$ hours. Jill can catch $35$ fish in $7$ hours. If they work together, and the number of days it takes them to catch $900$ fish is represented by $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, what is $m + n$? Assume that they work at a constant rate without taking breaks and that there are an infinite number of fish to catch. [b]p4.[/b] What is the units digit of $187^{10}$? [b]p5.[/b] What is the largest number of regions we can create by drawing $4$ lines in a plane? [b]p6.[/b] A regular hexagon is inscribed in a circle. If the area of the circle is $2025\pi$, given that the area of the hexagon can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any number other than $1$, find $a + b + c$. [b]p7.[/b] Find the number of trailing zeroes in the product $3! \cdot 5! \cdot 719!$. [b]p8.[/b] How many ordered triples $(x, y, z)$ of odd positive integers satisfy $x + y + z = 37$? [b]p9.[/b] Let $N$ be a number with $2021$ digits that has a remainder of $1$ when divided by $9$. $S(N)$ is the sum of the digits of $N$. What is the value of $S(S(S(S(N))))$? [b]p10.[/b] Ayana rolls a standard die $10$ times. If the probability that the sum of the $10$ die is divisible by $6$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$, what is $m + n$? [b]p11.[/b] In triangle $ABC$, $AB=13$, $BC=14$, and $CA=15$. The inscribed circle touches the side $BC$ at point $D$. The line $AI$ intersects side $BC$ at point $K$ given that $I$ is the incenter of triangle $ABC$. What is the area of the triangle $KID$? [b]p12.[/b] Given the cubic equation $2x^3+8x^2-42x-188$, with roots $a, b, c$, evaluate $|a^2b+a^2c+ab^2+b^2c+c^2a+bc^2|$. [b]p13.[/b] In tetrahedron $ABCD$, $AB=6$, $BC=8$, $CA=10$, and $DA$, $DB$, $DC=20$. If the volume of $ABCD$ is $a\sqrt{b}$ where $a$, $b$ are positive integers and in simplified radical form, what is $a + b$? [b]p14.[/b] A $2021$-digit number starts with the four digits $2021$ and the rest of the digits are randomly chosen from the set $0$,$1$,$2$,$3$,$4$,$5$,$6$. If the probability that the number is divisible by $14$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. what is $m + n$? [b]p15.[/b] Let $ABCD$ be a cyclic quadrilateral with circumcenter $O_1$ and circumradius $20$, Let the intersection of $AC$ and $BD$ be $E$. Let the circumcenter of $\vartriangle EDC$ be $O_2$. Given that the circumradius of 4EDC is $13$; $O_1O_2 = 11$, $BE = 11 \sqrt2$, find $O_1E^2$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Saint Petersburg Mathematical Olympiad, 5

Tags: geometry
Given is an isosceles trapezoid $ABCD$, such that $AD$ and $BC$ are bases and $AD=2AB$, and it is inscribed in a circle $c$. Points $E$ and $F$ are selected on a circle $c$ so that $AC$ || $DE$ and $BD$ || $AF$. The line $BE$ intersects lines $AC$ and $AF$ at points $X$ and $Y$, respectively. Prove that the circumcircles of triangles $BCX$ and $EFY$ are tangent to each other.

2020 CMIMC Geometry, 3

Tags: geometry
Point $A$, $B$, $C$, and $D$ form a rectangle in that order. Point $X$ lies on $CD$, and segments $\overline{BX}$ and $\overline{AC}$ intersect at $P$. If the area of triangle $BCP$ is 3 and the area of triangle $PXC$ is 2, what is the area of the entire rectangle?

1997 IMO Shortlist, 9

Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i \equal{} 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i\plus{}1}$ and $ A_iA_{i\plus{}2}$ (the addition of indices being mod 3). Let $ B_i, i \equal{} 1, 2, 3,$ be the second point of intersection of $ C_{i\plus{}1}$ and $ C_{i\plus{}2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.

2014 AMC 10, 22

Eight semicircles line the inside of a square with side length 2 as shown. What is the radius of the circle tangent to all of these semicircles? [asy] scale(200); draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle)); path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180); draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); draw(scale((sqrt(5)-1)/4)*unitcircle); [/asy] $\text{(A) } \dfrac{1+\sqrt2}4 \quad \text{(B) } \dfrac{\sqrt5-1}2 \quad \text{(C) } \dfrac{\sqrt3+1}4 \quad \text{(D) } \dfrac{2\sqrt3}5 \quad \text{(E) } \dfrac{\sqrt5}3$

2014 Regional Olympiad of Mexico Center Zone, 3

Let $AB$ be a triangle and $\Gamma$ the excircle, relative to the vertex $A$, with center $D$. The circle $\Gamma$ is tangent to the lines $AB$ and $AC$ at $E$ and $F$, respectively. Let $P$ and $Q$ be the intersections of $EF$ with $BD$ and $CD$, respectively. If $O$ is the point of intersection of $BQ$ and $CP$, show that the distance from $O$ to the line $BC$ is equal to the radius of the inscribed circle in the triangle $ABC$.

1978 Kurschak Competition, 3

A triangle has inradius $r$ and circumradius $R$. Its longest altitude has length $H$. Show that if the triangle does not have an obtuse angle, then $H \ge r+R$. When does equality hold?

2022 Cyprus TST, 3

Let $\triangle ABC$ be an acute-angled triangle with $AB<AC$ and let $(c)$ be its circumcircle with center $O$. Let $M$ be the midpoint of $BC$. The line $AM$ meets the circle $(c)$ again at the point $D$. The circumcircle $(c_1)$ of triangle $\triangle MDC$ intersects the line $AC$ at the points $C$ and $I$, and the circumcircle $(c_2)$ of $\triangle AMI$ intersects the line $AB$ at the points $A$ and $Z$. If $N$ is the foot of the perpendicular from $B$ on $AC$, and $P$ is the second point of intersection of $ZN$ with $(c_2)$, prove that the quadrilateral with vertices the points $N, P, I$ and $M$ is a parallelogram.

Novosibirsk Oral Geo Oly VIII, 2020.4

Point $P$ is chosen inside triangle $ABC$ so that $\angle APC+\angle ABC=180^o$ and $BC=AP.$ On the side $AB$, a point $K$ is chosen such that $AK = KB + PC$. Prove that $CK \perp AB$.

Kvant 2023, M2767

It is easy to prove that in a right triangle the sum of the radii of the incircle and three excircles is equal to the perimeter. Prove that the opposite statement is also true. [i]Proposed by I. Weinstein[/i]

2020 Sharygin Geometry Olympiad, 5

Let $BB_1$, $CC_1$ be the altitudes of triangle $ABC$, and $AD$ be the diameter of its circumcircle. The lines $BB_1$ and $DC_1$ meet at point $E$, the lines $CC_1$ and $DB_1$ meet at point $F$. Prove that $\angle CAE = \angle BAF$.

2015 Cuba MO, 8

Let $ABC$ be an acute triangle and $D$ be the foot of the altiutude from $A$ on $BC$, $E$ and $F$ are the midpoints of $BD$ and $DC$ respectively. $O$ and $Q$ are the circumcenters of the triangles $\vartriangle BF$ and $\vartriangle ACE$ respectively. $P$ is the intersection point of $OE$ and $QF$, show that $PB = PC$.

Ukraine Correspondence MO - geometry, 2019.8

The symbol of the Olympiad shows $5$ regular hexagons with side $a$, located inside a regular hexagon with side $b$. Find ratio $\frac{a}{b}$. [img]https://1.bp.blogspot.com/-OwyAl75LwiM/YIsThl3SG6I/AAAAAAAANS0/LwHEsAfyZMcqVIS8h_jr_n46OcMJaSTgQCLcBGAsYHQ/s0/2019%2BUkraine%2Bcorrespondence%2B5-12%2Bp8.png[/img]

2014 Contests, 4

In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$. Prove that $P$, $Q$ and $R$ are collinear.

Kvant 2021, M2670

There are 100 points on the plane so that any 10 of them are vertices of a convex polygon. Does it follow from this that all these points are the vertices of a convex 100-gon? [i]From the folklore[/i]