Found problems: 25757
2018 Junior Balkan Team Selection Tests - Romania, 3
Given an acute triangle $ABC$ with $AB < AC$.Let $\Omega $ be the circumcircle of $ ABC$ and $M$ be centeriod of triangle $ABC$.$AH$ is altitude of $ABC$.$MH$ intersect with $\Omega $ at $A'$.prove that circumcircle of triangle $A'HB$ is tangent to $AB$.
A.I.Golovanov, A. Yakubov
EMCC Speed Rounds, 2020
[i]20 problems for 25 minutes.[/i]
[b]p1.[/b] What is $20 \div 2 - 0 \times 1 + 2 \times 5$?
[b]p2.[/b] Today is Saturday, January $25$, $2020$. Exactly four hundred years from today, January $25$, $2420$, is again a Saturday. How many weekend days (Saturdays and Sundays) are in February, $2420$? (January has $31$ days and in year $2040$, February has $29$ days.)
[b]p3.[/b] Given that there are four people sitting around a circular table, and two of them stand up, what is the probability that the two of them were originally sitting next to each other?
[b]p4.[/b] What is the area of a triangle with side lengths $5$, $5$, and $6$?
[b]p5.[/b] Six people go to OBA Noodles on Main Street. Each person has $1/2$ probability to order Duck Noodle Soup, $1/3$ probability to order OBA Ramen, and $1/6$ probability to order Kimchi Udon Soup. What is the probability that three people get Duck Noodle Soup, two people get OBA Ramen, and one person gets Kimchi Udon Soup?
[b]p6.[/b] Among all positive integers $a$ and $b$ that satisfy $a^b = 64$, what is the minimum possible value of $a+b$?
[b]p7.[/b] A positive integer $n$ is called trivial if its tens digit divides $n$. How many two-digit trivial numbers are there?
[b]p8.[/b] Triangle $ABC$ has $AB = 5$, $BC = 13$, and $AC = 12$. Square $BCDE$ is constructed outside of the triangle. The perpendicular line from $A$ to side $DE$ cuts the square into two parts. What is the positive difference in their areas?
[b]p9.[/b] In an increasing arithmetic sequence, the first, third, and ninth terms form an increasing geometric sequence (in that order). Given that the first term is $5$, find the sum of the first nine terms of the arithmetic sequence.
[b]p10.[/b] Square $ABCD$ has side length $1$. Let points $C'$ and $D'$ be the reflections of points $C$ and $D$ over lines $AB$ and $BC$, respectively. Let P be the center of square $ABCD$. What is the area of the concave quadrilateral $PD'BC'$?
[b]p11.[/b] How many four-digit palindromes are multiples of $7$? (A palindrome is a number which reads the same forwards and backwards.)
[b]p12.[/b] Let $A$ and $B$ be positive integers such that the absolute value of the difference between the sum of the digits of $A$ and the sum of the digits of $(A + B)$ is $14$. What is the minimum possible value for $B$?
[b]p13.[/b] Clark writes the following set of congruences: $x \equiv a$ (mod $6$), $x \equiv b$ (mod $10$), $x \equiv c$ (mod $15$), and he picks $a$, $b$, and $c$ to be three randomly chosen integers. What is the probability that a solution for $x$ exists?
[b]p14.[/b] Vincent the bug is crawling on the real number line starting from $2020$. Each second, he may crawl from $x$ to $x - 1$, or teleport from $x$ to $\frac{x}{3}$ . What is the least number of seconds needed for Vincent to get to $0$?
[b]p15.[/b] How many positive divisors of $2020$ do not also divide $1010$?
[b]p16.[/b] A bishop is a piece in the game of chess that can move in any direction along a diagonal on which it stands. Two bishops attack each other if the two bishops lie on the same diagonal of a chessboard. Find the maximum number of bishops that can be placed on an $8\times 8$ chessboard such that no two bishops attack each other.
[b]p17.[/b] Let $ABC$ be a right triangle with hypotenuse $20$ and perimeter $41$. What is the area of $ABC$?
[b]p18.[/b] What is the remainder when $x^{19} + 2x^{18} + 3x^{17} +...+ 20$ is divided by $x^2 + 1$?
[b]p19.[/b] Ben splits the integers from $1$ to $1000$ into $50$ groups of $20$ consecutive integers each, starting with $\{1, 2,...,20\}$. How many of these groups contain at least one perfect square?
[b]p20.[/b] Trapezoid $ABCD$ with $AB$ parallel to $CD$ has $AB = 10$, $BC = 20$, $CD = 35$, and $AD = 15$. Let $AD$ and $BC$ intersect at $P$ and let $AC$ and $BD$ intersect at $Q$. Line $PQ$ intersects $AB$ at $R$. What is the length of $AR$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2025 Malaysian IMO Team Selection Test, 12
Two circles $\omega_1$ and $\omega_2$ are externally tangent at a point $A$. Let $\ell$ be a line tangent to $\omega_1$ at $B\neq A$ and $\omega_2$ at $C\neq A$. Let $BX$ and $CY$ be diameters in $\omega_1$ and $\omega_2$ respectively. Suppose points $P$ and $Q$ lies on $\omega_2$ such that $XP$ and $XQ$ are tangent to $\omega_2$, and points $R$ and $S$ lies on $\omega_1$ such that $YR$ and $YS$ are tangent to $\omega_1$.
a) Prove that the points $P$, $Q$, $R$, $S$ lie on a circle $\Gamma$.
b) Prove that the four segments $XP$, $XQ$, $YR$, $YS$ determine a quadrilateral with an incircle $\gamma$, and its radius is $\displaystyle\frac{1}{\sqrt{5}}$ times the radius of $\Gamma$.
[i]Proposed by Ivan Chan Kai Chin[/i]
2022 Romania EGMO TST, P3
Let $ABCD$ be a convex quadrilateral and let $O$ be the intersection of its diagonals. Let $P,Q,R,$ and $S$ be the projections of $O$ on $AB,BC,CD,$ and $DA$ respectively. Prove that \[2(OP+OQ+OR+OS)\leq AB+BC+CD+DA.\]
2002 Romania National Olympiad, 1
In the Cartesian plane consider the hyperbola
\[\Gamma=\{M(x,y)\in\mathbb{R}^2 \vert \frac{x^2}{4}-y^2=1\} \]
and a conic $\Gamma '$, disjoint from $\Gamma$. Let $n(\Gamma ,\Gamma ')$ be the maximal number of pairs of points $(A,A')\in\Gamma\times\Gamma '$ such that $AA'\le BB'$, for any $(B,B')$
For each $p\in\{0,1,2,4\}$, find the equation of $\Gamma'$ for which $n(\Gamma ,\Gamma ')=p$. Justify the answer.
2023 Stanford Mathematics Tournament, 5
Equilateral triangle $\vartriangle ABC$ has side length $12$ and equilateral triangles of side lengths $a, b, c < 6$ are each cut from a vertex of $\vartriangle ABC$, leaving behind an equiangular hexagon $A_1A_2B_1B_2C_1C_2$, where $A_1$ lies on $AC$, $A_2$ lies on $AB$, and the rest of the vertices are similarly defined. Let $A_3$ be the midpoint of $A_1A_2$ and define $B_3$, $C_3$ similarly. Let the center of $\vartriangle ABC$ be $O$. Note that $OA_3$, $OB_3$, $OC_3$ split the hexagon into three pentagons. If the sum of the areas of the equilateral triangles cut out is $18\sqrt3$ and the ratio of the areas of the pentagons is $5 : 6 : 7$, what is the value of $abc$?
2017 Azerbaijan BMO TST, 1
Let $\triangle ABC$ be a acute triangle. Let $H$ the foot of the C-altitude in $AB$ such that $AH=3BH$, let $M$ and $N$ the midpoints of $AB$ and $AC$ and let $P$ be a point such that $NP=NC$ and $CP=CB$ and $B$, $P$ are located on different sides of the line $AC$. Prove that $\measuredangle APM=\measuredangle PBA$.
1959 AMC 12/AHSME, 21
If $p$ is the perimeter of an equilateral triangle inscribed in a circle, the area of the circle is:
$ \textbf{(A)}\ \frac{\pi p^2}{3} \qquad\textbf{(B)}\ \frac{\pi p^2}{9}\qquad\textbf{(C)}\ \frac{\pi p^2}{27}\qquad\textbf{(D)}\ \frac{\pi p^2}{81} \qquad\textbf{(E)}\ \frac{\pi p^2 \sqrt3}{27} $
2016 SDMO (Middle School), 4
There is an infinitely tall tetrahedral stack of spheres where each row of the tetrahedron consists of a triangular arrangement of spheres, as shown below. There is $1$ sphere in the top row (which we will call row $0$), $3$ spheres in row $1$, $6$ spheres in row $2$, $10$ spheres in row $3$, etc. The top-most sphere in row $0$ is assigned the number $1$. We then assign each other sphere the sum of the number(s) assigned to the sphere(s) which touch it in the row directly above it. Find a simplified expression in terms of $n$ for the sum of the numbers assigned to each sphere from row $0$ to row $n$.
[asy]
import three;
import solids;
size(8cm);
//currentprojection = perspective(1, 1, 10);
triple backright = (-2, 0, 0), backleft = (-1, -sqrt(3), 0), backup = (-1, -sqrt(3) / 3, 2 * sqrt(6) / 3);
draw(shift(2 * backleft) * surface(sphere(1,20)), white); //2
draw(shift(backleft + backright) * surface(sphere(1,20)), white); //2
draw(shift(2 * backright) * surface(sphere(1,20)), white); //3
draw(shift(backup + backleft) * surface(sphere(1,20)), white);
draw(shift(backup + backright) * surface(sphere(1,20)), white);
draw(shift(2 * backup) * surface(sphere(1,20)), white);
draw(shift(backleft) * surface(sphere(1,20)), white);
draw(shift(backright) * surface(sphere(1,20)), white);
draw(shift(backup) * surface(sphere(1,20)), white);
draw(surface(sphere(1,20)), white);
label("Row 0", 2 * backup, 15 * dir(20));
label("Row 1", backup, 25 * dir(20));
label("Row 2", O, 35 * dir(20));
dot(-backup);
dot(-7 * backup / 8);
dot(-6 * backup / 8);
dot((backleft - backup) + backleft * 2);
dot(5 * (backleft - backup) / 4 + backleft * 2);
dot(6 * (backleft - backup) / 4 + backleft * 2);
dot((backright - backup) + backright * 2);
dot(5 * (backright - backup) / 4 + backright * 2);
dot(6 * (backright - backup) / 4 + backright * 2);
[/asy]
2016 Tournament Of Towns, 2
On plane there is fixed ray $s$ with vertex $A$ and a point $P$ not on the line which contains $s$. We choose a random point $K$ which lies on ray. Let $N$ be a point on a ray outside $AK$ such that $NK=1$. Let $M$ be a point such that $NM=1,M \in PK$ and $M!=K.$ Prove that all lines $NM$, provided by some point $K$, touch some fixed circle.
2008 Turkey Team Selection Test, 1
In an $ ABC$ triangle such that $ m(\angle B)>m(\angle C)$, the internal and external bisectors of vertice $ A$ intersects $ BC$ respectively at points $ D$ and $ E$. $ P$ is a variable point on $ EA$ such that $ A$ is on $ [EP]$. $ DP$ intersects $ AC$ at $ M$ and $ ME$ intersects $ AD$ at $ Q$. Prove that all $ PQ$ lines have a common point as $ P$ varies.
2011 Iran MO (3rd Round), 4
A variant triangle has fixed incircle and circumcircle. Prove that the radical center of its three excircles lies on a fixed circle and the circle's center is the midpoint of the line joining circumcenter and incenter.
[i]proposed by Masoud Nourbakhsh[/i]
1992 IMO Longlists, 12
Given a triangle $ABC$ such that the circumcenter is in the interior of the incircle, prove that the triangle $ABC$ is acute-angled.
2009 ELMO Problems, 2
Let $ABC$ be a triangle such that $AB < AC$. Let $P$ lie on a line through $A$ parallel to line $BC$ such that $C$ and $P$ are on the same side of line $AB$. Let $M$ be the midpoint of segment $BC$. Define $D$ on segment $BC$ such that $\angle BAD = \angle CAM$, and define $T$ on the extension of ray $CB$ beyond $B$ so that $\angle BAT = \angle CAP$. Given that lines $PC$ and $AD$ intersect at $Q$, that lines $PD$ and $AB$ intersect at $R$, and that $S$ is the midpoint of segment $DT$, prove that if $A$,$P$,$Q$, and $R$ lie on a circle, then $Q$, $R$, and $S$ are collinear.
[i]David Rush[/i]
1990 IMO Longlists, 63
Let $ P$ be a point inside a regular tetrahedron $ T$ of unit volume. The four planes passing through $ P$ and parallel to the faces of $ T$ partition $ T$ into 14 pieces. Let $ f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $ f(P)$ as $ P$ varies over $ T.$
2015 IMO Shortlist, G5
Let $ABC$ be a triangle with $CA \neq CB$. Let $D$, $F$, and $G$ be the midpoints of the sides $AB$, $AC$, and $BC$ respectively. A circle $\Gamma$ passing through $C$ and tangent to $AB$ at $D$ meets the segments $AF$ and $BG$ at $H$ and $I$, respectively. The points $H'$ and $I'$ are symmetric to $H$ and $I$ about $F$ and $G$, respectively. The line $H'I'$ meets $CD$ and $FG$ at $Q$ and $M$, respectively. The line $CM$ meets $\Gamma$ again at $P$. Prove that $CQ = QP$.
[i]Proposed by El Salvador[/i]
2009 Math Prize For Girls Problems, 5
The figure below shows two parallel lines, $ \ell$ and $ m$, that are distance $ 12$ apart:
[asy]unitsize(7);
draw((-7, 0) -- (12, 0));
draw((-7, 12) -- (12, 12));
real r = 169 / 48;
draw(circle((0, r), r));
draw(circle((5, 12 - r), r));
pair A = (0, 0);
pair B = (5, 12);
dot(A);
dot(B);
label("$A$", A, plain.S);
label("$B$", B, plain.N);
label("$\ell$", (12, 0), plain.E);
label("$m$", (12, 12), plain.E);[/asy]
A circle is tangent to line $ \ell$ at point $ A$. Another circle is tangent to line $ m$ at point $ B$. The two circles are congruent and tangent to each other as shown. The distance between $ A$ and $ B$ is $ 13$. What is the radius of each circle?
2015 Dutch IMO TST, 3
An equilateral triangle $ABC$ is given. On the line through $B$ parallel to $AC$ there is a point $D$, such that $D$ and $C$ are on the same side of the line $AB$. The perpendicular bisector of $CD$ intersects the line $AB$ in $E$. Prove that triangle $CDE$ is equilateral.
2019 BMT Spring, 9
Let $ ABCD $ be a tetrahedron with $ \angle ABC = \angle ABD = \angle CBD = 90^\circ $ and $ AB = BC $. Let $ E, F, G $ be points on $ \overline{AD} $, $ BD $, and $ \overline{CD} $, respectively, such that each of the quadrilaterals $ AEFB $, $ BFGC $, and $ CGEA $ have an inscribed circle. Let $ r $ be the smallest real number such that $ \dfrac{[\triangle EFG]}{[\triangle ABC]} \leq r $ for all such configurations $ A, B, C, D, E, F, G $. If $ r $ can be expressed as $ \dfrac{\sqrt{a - b\sqrt{c}}}{d} $ where $ a, b, c, d $ are positive integers with $ \gcd(a, b) $ squarefree and $ c $ squarefree, find $ a + b + c + d $.
Note: Here, $ [P] $ denotes the area of polygon $ P $. (This wasn't in the original test; instead they used the notation $ \text{area}(P) $, which is clear but frankly cumbersome. :P)
2000 Estonia National Olympiad, 3
Let $ABC$ be an acute-angled triangle with $\angle ACB = 60^o$ , and its heights $AD$ and $BE$ intersect at point $H$. Prove that the circumcenter of triangle $ABC$ lies on a line bisecting the angles $AHE$ and $BHD$.
2013 Ukraine Team Selection Test, 1
Let $ABC$ be an isosceles triangle $ABC$ with base $BC$ insribed in a circle. The segment $AD$ is the diameter of the circle, and point $P$ lies on the smaller arc $BD$. Line $DP$ intersects rays $AB$ and $AC$ at points $M$ and $N$, and the lines $BP$ and $CP$ intersects the line $AD$ at points $Q$ and $R$. Prove that the midpoint of the segment $MN$ lies on the circumscribed circle of triangle $PQR$.
2024 Azerbaijan BMO TST, 6
Let $ABC$ be an acute triangle ($AB < BC < AC$) with circumcircle $\Gamma$. Assume there exists $X \in AC$ satisfying $AB=BX$ and $AX=BC$. Points $D, E \in \Gamma$ are taken such that $\angle ADB<90^{\circ}$, $DA=DB$ and $BC=CE$. Let $P$ be the intersection point of $AE$ with the tangent line to $\Gamma$ at $B$, and let $Q$ be the intersection point of $AB$ with tangent line to $\Gamma$ at $C$. Show that the projection of $D$ onto $PQ$ lies on the circumcircle of $\triangle PAB$.
2018 Stars of Mathematics, 1
Let $ABC$ be a triangle, and let $\ell$ be the line through $A$ and perpendicular to the line $BC$. The reflection of $\ell$ in the line $AB$ crosses the line through $B$ and perpendicular to $AB$ at $P$. The reflection of $\ell$ in the line $AC$ crosses the line through $C$ and perpendicular to $AC$ at $Q$. Show that the line $PQ$ passes through the orthocenter of the triangle $ABC$.
Flavian Georgescu
2016 Romanian Master of Mathematics, 1
Let $ABC$ be a triangle and let $D$ be a point on the segment $BC, D\neq B$ and $D\neq C$. The circle $ABD$ meets the segment $AC$ again at an interior point $E$. The circle $ACD$ meets the segment $AB$ again at an interior point $F$. Let $A'$ be the reflection of $A$ in the line $BC$. The lines $A'C$ and $DE$ meet at $P$, and the lines $A'B$ and $DF$ meet at $Q$. Prove that the lines $AD, BP$ and $CQ$ are concurrent (or all parallel).
1991 Greece National Olympiad, 2
Let $\widehat{xOy}$ be an acute angle , $A$ a point on ray $Oy$ and $B$ a point on ray $Ox$ such that $AB \perp OX$ .Prove that there are two points on $Ox$, each of the equidistant from $A$ and $Ox$.