This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 CMIMC, 1.6

Tags: geometry
Let $\Gamma_1$ and $\Gamma_2$ be two circles with radii $r_1$ and $r_2,$ respectively, where $r_1>r_2.$ Suppose $\Gamma_1$ and $\Gamma_2$ intersect at two distinct points $A$ and $B.$ A point $C$ is selected on ray $\overrightarrow{AB},$ past $B,$ and the tangents to $\Gamma_1$ and $\Gamma_2$ from $C$ are marked as points $P$ and $Q,$ respectively. Suppose that $\Gamma_2$ passes through the center of $\Gamma_1$ and that points $P, B, Q$ are collinear in that order, with $PB=3$ and $QB=2.$ What is the length of $AB?$ [i]Proposed by Kyle Lee[/i]

Estonia Open Senior - geometry, 2018.1.5

The midpoints of the sides $BC, CA$, and $AB$ of triangle $ABC$ are $D, E$, and $F$, respectively. The reflections of centroid $M$ of $ABC$ around points $D, E$, and $F$ are $X, Y$, and $Z$, respectively. Segments $XZ$ and $YZ$ intersect the side $AB$ in points $K$ and $L$, respectively. Prove that $AL = BK$.

2019 BMT Spring, 7

Let $\vartriangle ABC$ be an equilateral triangle with side length $M$ such that points $E_1$ and $E_2$ lie on side $AB$, $F_1$ and $F_2$ lie on side $BC$, and $G1$ and $G2$ lie on side $AC$, such that $$m = \overline{AE_1} = \overline{BE_2} = \overline{BF_1} = \overline{CF_2} = \overline{CG_1} = \overline{AG_2}$$ and the area of polygon $E_1E_2F_1F_2G_1G_2$ equals the combined areas of $\vartriangle AE_1G_2$, $\vartriangle BF_1E_2$, and $\vartriangle CG_1F_2$. Find the ratio $\frac{m}{M}$. [img]https://cdn.artofproblemsolving.com/attachments/a/0/88b36c6550c42d913cdddd4486a3dde251327b.png[/img]

2009 AMC 12/AHSME, 17

Each face of a cube is given a single narrow stripe painted from the center of one edge to the center of its opposite edge. The choice of the edge pairing is made at random and independently for each face. What is the probability that there is a continuous stripe encircling the cube? $ \textbf{(A)}\ \frac {1}{8}\qquad \textbf{(B)}\ \frac {3}{16}\qquad \textbf{(C)}\ \frac {1}{4} \qquad \textbf{(D)}\ \frac {3}{8}\qquad \textbf{(E)}\ \frac {1}{2}$

2011 Portugal MO, 2

The point $P$, inside the triangle $[ABC]$, lies on the perpendicular bisector of $[AB]$. $Q$ and $R$ points, exterior to the triangle, they are such that $ [BPA], [BQC]$ and $[CRA]$ are similar triangles. Shows that $[PQCR]$ is a parallelogram. [img]https://cdn.artofproblemsolving.com/attachments/f/5/6e036b127f8a013794b8246cbb1544e7280d4a.png[/img]

2020 March Advanced Contest, 2

An acute triangle \(ABC\) has circumcircle \(\Gamma\) and circumcentre \(O\). The incentres of \(AOB\) and \(AOC\) are \(I_b\) and \(I_c\) respectively. Let \(M\) be the the point on \(\Gamma\) such that \(MB = MC\) and \(M\) lies on the same side of \(BC\) as \(A\). Prove that the points \(M\), \(A\), \(I_b\), and \(I_c\) are concyclic.

2010 Romanian Master of Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2015 Peru Cono Sur TST, P8

Let $ABCD$ be a cyclic quadrilateral such that the lines $AB$ and $CD$ intersects in $K$, let $M$ and $N$ be the midpoints of $AC$ and $CK$ respectively. Find the possible value(s) of $\angle ADC$ if the quadrilateral $MBND$ is cyclic.

2002 China Team Selection Test, 1

In acute triangle $ ABC$, show that: $ \sin^3{A}\cos^2{(B \minus{} C)} \plus{} \sin^3{B}\cos^2{(C \minus{} A)} \plus{} \sin^3{C}\cos^2{(A \minus{} B)} \leq 3\sin{A} \sin{B} \sin{C}$ and find out when the equality holds.

1918 Eotvos Mathematical Competition, 1

Let $AC$ be the longer of the two diagonals of the parallelogram $ABCD$. Drop perpendiculars from $C$ to $AB$ and $AD$ extended. If $E$ and $F$ are the feet of these perpendiculars, prove that $$AB \cdot AE + AD \cdot AF = (AC)^2.$$

2021 Stanford Mathematics Tournament, R6

[b]p21[/b]. If $f = \cos(\sin (x))$. Calculate the sum $\sum^{2021}_{n=0} f'' (n \pi)$. [b]p22.[/b] Find all real values of $A$ that minimize the difference between the local maximum and local minimum of $f(x) = \left(3x^2 - 4\right)\left(x - A + \frac{1}{A}\right)$. [b]p23.[/b] Bessie is playing a game. She labels a square with vertices labeled $A, B, C, D$ in clockwise order. There are $7$ possible moves: she can rotate her square $90$ degrees about the center, $180$ degrees about the center, $270$ degrees about the center; or she can flip across diagonal $AC$, flip across diagonal $BD$, flip the square horizontally (flip the square so that vertices A and B are switched and vertices $C$ and $D$ are switched), or flip the square vertically (vertices $B$ and $C$ are switched, vertices $A$ and $D$ are switched). In how many ways can Bessie arrive back at the original square for the first time in $3$ moves? [b]p24.[/b] A positive integer is called [i]happy [/i] if the sum of its digits equals the two-digit integer formed by its two leftmost digits. Find the number of $5$-digit happy integers. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1997 Flanders Math Olympiad, 3

$\Delta oa_1b_1$ is isosceles with $\angle a_1ob_1 = 36^\circ$. Construct $a_2,b_2,a_3,b_3,...$ as below, with $|oa_{i+1}| = |a_ib_i|$ and $\angle a_iob_i = 36^\circ$, Call the summed area of the first $k$ triangles $A_k$. Let $S$ be the area of the isocseles triangle, drawn in - - -, with top angle $108^\circ$ and $|oc|=|od|=|oa_1|$, going through the points $b_2$ and $a_2$ as shown on the picture. (yes, $cd$ is parallel to $a_1b_1$ there) Show $A_k < S$ for every positive integer $k$. [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=284[/img]

2011 ELMO Shortlist, 1

Let $ABCD$ be a convex quadrilateral. Let $E,F,G,H$ be points on segments $AB$, $BC$, $CD$, $DA$, respectively, and let $P$ be the intersection of $EG$ and $FH$. Given that quadrilaterals $HAEP$, $EBFP$, $FCGP$, $GDHP$ all have inscribed circles, prove that $ABCD$ also has an inscribed circle. [i]Evan O'Dorney.[/i]

2002 Iran Team Selection Test, 10

Suppose from $(m+2)\times(n+2)$ rectangle we cut $4$, $1\times1$ corners. Now on first and last row first and last columns we write $2(m+n)$ real numbers. Prove we can fill the interior $m\times n$ rectangle with real numbers that every number is average of it's $4$ neighbors.

2015 BAMO, 4

Let $A$ be a corner of a cube. Let $B$ and $C$ the midpoints of two edges in the positions shown on the figure below: [center][img]http://i.imgur.com/tEODnV0.png[/img][/center] The intersection of the cube and the plane containing $A,B,$ and $C$ is some polygon, $P$. [list=a] [*] How many sides does $P$ have? Justify your answer. [*] Find the ratio of the area of $P$ to the area of $\triangle{ABC}$ and prove that your answer is correct.

2009 South East Mathematical Olympiad, 6

Let $\odot O$ , $\odot I$ be the circumcircle and inscribed circles of triangle$ABC$ . Prove that : From every point $D$ on $\odot O$ ,we can construct a triangle $DEF$ such that $ABC$ and $DEF$ have the same circumcircle and inscribed circles

2014 IMO Shortlist, C5

A set of lines in the plane is in [i]general position[/i] if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its [i]finite regions[/i]. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary. [i]Note[/i]: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.

Cono Sur Shortlist - geometry, 2018.G5

We say that a polygon $P$ is inscribed in another polygon $Q$ when all the vertices of $P$ belong to the perimeter of $Q$. We also say in this case that $Q$ is circumscribed to $P$. Given a triangle $T$, let $\ell$ be the largest side of a square inscribed in $T$ and $L$ is the shortest side of a square circumscribed to $T$ . Find the smallest possible value of the ratio $L/\ell$ .

2024 Yasinsky Geometry Olympiad, 1

Let \( I \) and \( O \) be the incenter and circumcenter of the right triangle \( ABC \) (\( \angle C = 90^\circ \)), and let \( K \) be the tangency point of the incircle with \( AC \). Let \( P \) and \( Q \) be the points where the circumcircle of triangle \( AOK \) intersects \( OC \) and the circumcircle of triangle \( ABC \), respectively. Prove that points \( C, I, P, \) and \( Q \) are concyclic. [i]Proposed by Mykhailo Sydorenko[/i]

1986 French Mathematical Olympiad, Problem 1

Let $ABCD$ be a tetrahedron. (a) Prove that the midpoints of the edges $AB,AC,BD$, and $CD$ lie in a plane. (b) Find the point in that plane, whose sum of distances from the lines $AD$ and $BC$ is minimal.

2022/2023 Tournament of Towns, P4

Tags: geometry
Consider an acute non-isosceles triangle. In a single step it is allowed to cut any one of the available triangles into two triangles along its median. Is it possible that after a finite number of cuttings all triangles will be isosceles? [i]Proposed by E. Bakaev[/i]

1989 APMO, 3

Let $A_1$, $A_2$, $A_3$ be three points in the plane, and for convenience, let $A_4= A_1$, $A_5 = A_2$. For $n = 1$, $2$, and $3$, suppose that $B_n$ is the midpoint of $A_n A_{n+1}$, and suppose that $C_n$ is the midpoint of $A_n B_n$. Suppose that $A_n C_{n+1}$ and $B_n A_{n+2}$ meet at $D_n$, and that $A_n B_{n+1}$ and $C_n A_{n+2}$ meet at $E_n$. Calculate the ratio of the area of triangle $D_1 D_2 D_3$ to the area of triangle $E_1 E_2 E_3$.

2018 District Olympiad, 4

Let $ABC$ be a triangle with $\angle A = 80^o$ and $\angle C = 30^o$. Consider the point $M$ inside the triangle $ABC$ so that $\angle MAC= 60^o$ and $\angle MCA = 20^o$. If $N$ is the intersection of the lines $BM$ and $AC$ to show that a $MN$ is the bisector of the angle $\angle AMC$.

1988 IMO Longlists, 4

The triangle $ ABC$ is inscribed in a circle. The interior bisectors of the angles $ A,B$ and $ C$ meet the circle again at $ A', B'$ and $ C'$ respectively. Prove that the area of triangle $ A'B'C'$ is greater than or equal to the area of triangle $ ABC.$

1987 IMO Longlists, 55

Tags: geometry
Two moving bodies $M_1,M_2$ are displaced uniformly on two coplanar straight lines. Describe the union of all straight lines $M_1M_2.$