Found problems: 25757
2020 AIME Problems, 15
Let $ABC$ be an acute triangle with circumcircle $\omega$ and orthocenter $H$. Suppose the tangent to the circumcircle of $\triangle HBC$ at $H$ intersects $\omega$ at points $X$ and $Y$ with $HA=3$, $HX=2$, $HY=6$. The area of $\triangle ABC$ can be written as $m\sqrt n$, where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.
2013 German National Olympiad, 3
Given two circles $k_1$ and $k_2$ which intersect at $Q$ and $Q'.$ Let $P$ be a point on $k_2$ and inside of $k_1 $ such that the line $PQ$ intersects $k_1$ in a point $X\ne Q$ and such that the tangent to $k_1$ at $X$ intersects $k_2$ in points $A$ and $B.$ Let $k$ be the circle through $A,B$ which is tangent to the line through $P$ parallel to $AB.$
Prove that the circles $k_1$ and $k$ are tangent.
2020 Princeton University Math Competition, A2/B4
Hexagon $ABCDEF$ has an inscribed circle $\Omega$ that is tangent to each of its sides. If $AB = 12$, $\angle FAB = 120^o$, and $\angle ABC = 150^o$, and if the radius of $\Omega$ can be written as $m +\sqrt{n}$ for positive integers $m, n$, find $m + n$.
2003 Kurschak Competition, 1
Draw a circle $k$ with diameter $\overline{EF}$, and let its tangent in $E$ be $e$. Consider all possible pairs $A,B\in e$ for which $E\in \overline{AB}$ and $AE\cdot EB$ is a fixed constant. Define $(A_1,B_1)=(AF\cap k,BF\cap k)$. Prove that the segments $\overline{A_1B_1}$ all concur in one point.
2016 China National Olympiad, 5
Let $ABCD$ be a convex quadrilateral. Show that there exists a square $A'B'C'D'$ (Vertices maybe ordered clockwise or counter-clockwise) such that $A \not = A', B \not = B', C \not = C', D \not = D'$ and $AA',BB',CC',DD'$ are all concurrent.
2007 Today's Calculation Of Integral, 255
Find the value of $ a$ for which the area of the figure surrounded by $ y \equal{} e^{ \minus{} x}$ and $ y \equal{} ax \plus{} 3\ (a < 0)$ is minimized.
2008 Iran MO (3rd Round), 3
Let $ ABCD$ be a quadrilateral, and $ E$ be intersection points of $ AB,CD$ and $ AD,BC$ respectively. External bisectors of $ DAB$ and $ DCB$ intersect at $ P$, external bisectors of $ ABC$ and $ ADC$ intersect at $ Q$ and external bisectors of $ AED$ and $ AFB$ intersect at $ R$. Prove that $ P,Q,R$ are collinear.
2004 AMC 12/AHSME, 19
A truncated cone has horizontal bases with radii $ 18$ and $ 2$. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?
$ \textbf{(A)}\ 6 \qquad
\textbf{(B)}\ 4\sqrt5 \qquad
\textbf{(C)}\ 9 \qquad
\textbf{(D)}\ 10 \qquad
\textbf{(E)}\ 6\sqrt3$
ABMC Accuracy Rounds, 2018
[b]p1.[/b] Suppose that $a \oplus b = ab - a - b$. Find the value of $$((1 \oplus 2) \oplus (3 \oplus 4)) \oplus 5.$$
[b]p2.[/b] Neethin scores a $59$ on his number theory test. He proceeds to score a $17$, $23$, and $34$ on the next three tests. What score must he achieve on his next test to earn an overall average of $60$ across all five tests?
[b]p3.[/b] Consider a triangle with side lengths $28$ and $39$. Find the number of possible integer lengths of the third side.
[b]p4.[/b] Nithin is thinking of a number. He says that it is an odd two digit number where both of its digits are prime, and that the number is divisible by the sum of its digits. What is the sum of all possible numbers Nithin might be thinking of?
[b]p5.[/b] Dora sees a fire burning on the dance floor. She calls her friends to warn them to stay away. During the first pminute Dora calls Poonam and Serena. During the second minute, Poonam and Serena call two more friends each, and so does Dora. This process continues, with each person calling two new friends every minute. How many total people would know of the fire after $6$ minutes?
[b]p6.[/b] Charlotte writes all the positive integers $n$ that leave a remainder of $2$ when $2018$ is divided by $n$. What is the sum of the numbers that she writes?
[b]p7.[/b] Consider the following grid. Stefan the bug starts from the origin, and can move either to the right, diagonally in the positive direction, or upwards. In how many ways can he reach $(5, 5)$?
[img]https://cdn.artofproblemsolving.com/attachments/9/9/b9fdfdf604762ec529a1b90d663e289b36b3f2.png[/img]
[b]p8.[/b] Let $a, b, c$ be positive numbers where $a^2 + b^2 + c^2 = 63$ and $2a + 3b + 6c = 21\sqrt7$. Find
$\left( \frac{a}{c}\right)^{\frac{a}{b}} $.
[b]p9.[/b] What is the sum of the distinct prime factors of $12^5 + 12^4 + 1$?
[b]p10.[/b] Allen starts writing all permutations of the numbers $1$, $2$, $3$, $4$, $5$, $6$ $7$, $8$, $9$, $10$ on a blackboard. At one point he writes the permutation $9$, $4$, $3$, $1$, $2$, $5$, $6$, $7$, $8$, $10$. David points at the permutation and observes that for any two consecutive integers $i$ and $i+1$, all integers that appear in between these two integers in the permutation are all less than $i$. For example, $4$ and $5$ have only the numbers $3$, $1$, $2$ in between them. How many of the $10!$ permutations on the board satisfy this property that David observes?
[b]p11.[/b] (Estimation) How many positive integers less than $2018$ can be expressed as the sum of $3$ square numbers?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1993 Bulgaria National Olympiad, 2
Let $M$ be an interior point of the triangle $ABC$ such that $AMC = 90^\circ$, $AMB = 150^\circ$, and $BMC = 120^\circ$. The circumcenters of the triangles $AMC$, $AMB$, and $BMC$ are $P$, $Q$, and $R$ respectively. Prove that the area of $\Delta PQR$ is greater than or equal to the area of $\Delta ABC$.
2017 AMC 12/AHSME, 15
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB' = 3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC' = 3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA' = 3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?
$\textbf{(A) }9:1\qquad\textbf{(B) }16:1\qquad\textbf{(C) }25:1\qquad\textbf{(D) }36:1\qquad\textbf{(E) }37:1$
2014 Math Prize For Girls Problems, 16
If $\sin x + \sin y = \frac{96}{65}$ and $\cos x + \cos y = \frac{72}{65}$, then what is the value of $\tan x + \tan y$?
2016 Czech-Polish-Slovak Junior Match, 5
Let $ABC$ be a triangle with $AB : AC : BC =5:5:6$. Denote by $M$ the midpoint of $BC$ and by $N$ the point on the segment $BC$ such that $BN = 5 \cdot CN$. Prove that the circumcenter of triangle $ABN$ is the midpoint of the segment connecting the incenters of triangles $ABC$ and $ABM$.
Slovakia
2010 Canadian Mathematical Olympiad Qualification Repechage, 2
Two tangents $AT$ and $BT$ touch a circle at $A$ and $B$, respectively, and meet perpendicularly at $T$. $Q$ is on $AT$, $S$ is on $BT$, and $R$ is on the circle, so that $QRST$ is a rectangle with $QT = 8$ and $ST = 9$. Determine the radius of the circle.
1994 AMC 12/AHSME, 7
Squares $ABCD$ and $EFGH$ are congruent, $AB=10$, and $G$ is the center of square $ABCD$. The area of the region in the plane covered by these squares is
[asy]
draw((0,0)--(10,0)--(10,10)--(0,10)--cycle);
draw((5,5)--(12,-2)--(5,-9)--(-2,-2)--cycle);
label("A", (0,0), W);
label("B", (10,0), E);
label("C", (10,10), NE);
label("D", (0,10), NW);
label("G", (5,5), N);
label("F", (12,-2), E);
label("E", (5,-9), S);
label("H", (-2,-2), W);
dot((-2,-2));
dot((5,-9));
dot((12,-2));
dot((0,0));
dot((10,0));
dot((10,10));
dot((0,10));
dot((5,5));
[/asy]
$ \textbf{(A)}\ 75 \qquad\textbf{(B)}\ 100 \qquad\textbf{(C)}\ 125 \qquad\textbf{(D)}\ 150 \qquad\textbf{(E)}\ 175 $
2007 Moldova National Olympiad, 11.7
Given a tetrahedron $VABC$ with edges $VA$, $VB$ and $VC$ perpendicular any two of them. The sum of the lengths of the tetrahedron's edges is $3p$. Find the maximal volume of $VABC$.
2018 India IMO Training Camp, 1
Let $\Delta ABC$ be an acute triangle. $D,E,F$ are the touch points of incircle with $BC,CA,AB$ respectively. $AD,BE,CF$ intersect incircle at $K,L,M$ respectively. If,$$\sigma = \frac{AK}{KD} + \frac{BL}{LE} + \frac{CM}{MF}$$ $$\tau = \frac{AK}{KD}.\frac{BL}{LE}.\frac{CM}{MF}$$
Then prove that $\tau = \frac{R}{16r}$. Also prove that there exists integers $u,v,w$ such that, $uvw \neq 0$, $u\sigma + v\tau +w=0$.
2017 Peru IMO TST, 3
The inscribed circle of the triangle $ABC$ is tangent to the sides $BC, AC$ and $AB$ at points $D, E$ and $F$, respectively. Let $M$ be the midpoint of $EF$. The circle circumscribed around the triangle $DMF$ intersects line $AB$ at $L$, the circle circumscribed around the triangle $DME$ intersects the line $AC$ at $K$. Prove that the circle circumscribed around the triangle $AKL$ is tangent to the line $BC$.
2008 Ukraine Team Selection Test, 9
Given $ \triangle ABC$ with point $ D$ inside. Let $ A_0\equal{}AD\cap BC$, $ B_0\equal{}BD\cap AC$, $ C_0 \equal{}CD\cap AB$ and $ A_1$, $ B_1$, $ C_1$, $ A_2$, $ B_2$, $ C_2$ are midpoints of $ BC$, $ AC$, $ AB$, $ AD$, $ BD$, $ CD$ respectively. Two lines parallel to $ A_1A_2$ and $ C_1C_2$ and passes through point $ B_0$ intersects $ B_1B_2$ in points $ A_3$ and $ C_3$respectively. Prove that $ \frac{A_3B_1}{A_3B_2}\equal{}\frac{C_3B_1}{C_3B_2}$.
2017 BMT Spring, 19
Let $T$ be the triangle in the $xy$-plane with vertices $(0, 0)$, $(3, 0)$, and $\left(0, \frac32\right)$. Let $E$ be the ellipse inscribed in $T$ which meets each side of $T$ at its midpoint. Find the distance from the center of $E$ to $(0, 0)$.
2020 Korea National Olympiad, 2
$H$ is the orthocenter of an acute triangle $ABC$, and let $M$ be the midpoint of $BC$. Suppose $(AH)$ meets $AB$ and $AC$ at $D,E$ respectively. $AH$ meets $DE$ at $P$, and the line through $H$ perpendicular to $AH$ meets $DM$ at $Q$. Prove that $P,Q,B$ are collinear.
2016 BMT Spring, 9
Given right triangle $ABC$ with right angle at $C$, construct three external squares $ABDE$, $BCFG$, and $ACHI$. If $DG = 19$ and $EI = 22$, compute the length of $FH$.
1998 AMC 12/AHSME, 1
[asy]
//rectangles above problem statement
size(15cm);
for(int i=0;i<5;++i){
draw((6*i-14,-1.2)--(6*i-14,1.2)--(6*i-10,1.2)--(6*i-10,-1.2)--cycle);
}
label("$A$", (-12,2.25));
label("$B$", (-6,2.25));
label("$C$", (0,2.25));
label("$D$", (6,2.25));
label("$E$", (12,2.25));
//top numbers
label("$1$", (-12,1.25),dir(-90));
label("$0$", (-6,1.25),dir(-90));
label("$8$", (0,1.25),dir(-90));
label("$5$", (6,1.25),dir(-90));
label("$2$", (12,1.25),dir(-90));
//bottom numbers
label("$9$", (-12,-1.25),dir(90));
label("$6$", (-6,-1.25),dir(90));
label("$2$", (0,-1.25),dir(90));
label("$8$", (6,-1.25),dir(90));
label("$0$", (12,-1.25),dir(90));
//left numbers
label("$4$", (-14,0),dir(0));
label("$1$", (-8,0),dir(0));
label("$3$", (-2,0),dir(0));
label("$7$", (4,0),dir(0));
label("$9$", (10,0),dir(0));
//right numbers
label("$6$", (-10,0),dir(180));
label("$3$", (-4,0),dir(180));
label("$5$", (2,0),dir(180));
label("$4$", (8,0),dir(180));
label("$7$", (14,0),dir(180));
[/asy]
Each of the sides of the five congruent rectangles is labeled with an integer, as shown above. These five rectangles are placed, without rotating or reflecting, in positions $I$ through $V$ so that the labels on coincident sides are equal.
[asy]
//diagram below problem statement
size(7cm);
for(int i=-3;i<=1;i+=2){
for(int j=-1;j<=0;++j){
if(i==1 && j==-1) continue;
draw((i,j)--(i+2,j)--(i+2,j-1)--(i,j-1)--cycle);
}}
label("$I$",(-2,-0.5));
label("$II$",(0,-0.5));
label("$III$",(2,-0.5));
label("$IV$",(-2,-1.5));
label("$V$",(0,-1.5));
[/asy]
Which of the rectangles is in position $I$?
$\textbf{(A)} \ A \qquad \textbf{(B)} \ B \qquad \textbf{(C)} \ C \qquad \textbf{(D)} \ D \qquad \textbf{(E)} \ E$
DMM Individual Rounds, 2019
[b]p1.[/b] Compute the value of $N$, where
$$N = 818^3 - 6 \cdot 818^2 \cdot 209 + 12 \cdot 818 \cdot 209^2 - 8 \cdot 209^3$$
[b]p2.[/b] Suppose $x \le 2019$ is a positive integer that is divisible by $2$ and $5$, but not $3$. If $7$ is one of the digits in $x$, how many possible values of $x$ are there?
[b]p3.[/b] Find all non-negative integer solutions $(a,b)$ to the equation $$b^2 + b + 1 = a^2.$$
[b]p4.[/b] Compute the remainder when $\sum^{2019}_{n=1} n^4$ is divided by $53$.
[b]p5.[/b] Let $ABC$ be an equilateral triangle and $CDEF$ a square such that $E$ lies on segment $AB$ and $F$ on segment $BC$. If the perimeter of the square is equal to $4$, what is the area of triangle $ABC$?
[img]https://cdn.artofproblemsolving.com/attachments/1/6/52d9ef7032c2fadd4f97d7c0ea051b3766b584.png[/img]
[b]p6.[/b] $$S = \frac{4}{1\times 2\times 3}+\frac{5}{2\times 3\times 4} +\frac{6}{3\times 4\times 5}+ ... +\frac{101}{98\times 99\times 100}$$
Let $T = \frac54 - S$. If $T = \frac{m}{n}$ , where $m$ and $n$ are relatively prime integers, find the value of
$m + n$.
[b]p7.[/b] Find the sum of $$\sum^{2019}_{i=0}\frac{2^i}{2^i + 2^{2019-i}}$$
[b]p8.[/b] Let $A$ and $B$ be two points in the Cartesian plane such that $A$ lies on the line $y = 12$, and $B$ lies on the line $y = 3$. Let $C_1$, $C_2$ be two distinct circles that intersect both $A$ and $B$ and are tangent to the $x$-axis at $P$ and $Q$, respectively. If $PQ = 420$, determine the length of $AB$.
[b]p9.[/b] Zion has an average $2$ out of $3$ hit rate for $2$-pointers and $1$ out of $3$ hit rate for $3$-pointers. In a recent basketball match, Zion scored $18$ points without missing a shot, and all the points came from $2$ or $3$-pointers. What is the probability that all his shots were $3$-pointers?
[b]p10.[/b] Let $S = \{1,2, 3,..., 2019\}$. Find the number of non-constant functions $f : S \to S$ such that
$$f(k) = f(f(k + 1)) \le f(k + 1) \,\,\,\, for \,\,\,\, all \,\,\,\, 1 \le k \le 2018.$$
Express your answer in the form ${m \choose n}$, where $m$ and $n$ are integers.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Brazil Team Selection Test, 3
Let $\omega$ be the circumcircle of a triangle $ABC$. Denote by $M$ and $N$ the midpoints of the sides $AB$ and $AC$, respectively, and denote by $T$ the midpoint of the arc $BC$ of $\omega$ not containing $A$. The circumcircles of the triangles $AMT$ and $ANT$ intersect the perpendicular bisectors of $AC$ and $AB$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $ABC$. The lines $MN$ and $XY$ intersect at $K$. Prove that $KA=KT$.