Found problems: 25757
1994 All-Russian Olympiad, 3
Two circles $S_1$ and $S_2$ touch externally at $F$. their external common tangent touches $S_1$ at A and $S_2$ at $B$. A line, parallel to $AB$ and tangent to $S_2$ at $C$, intersects $S_1$ at $D$ and $E$. Prove that the common chord of the circumcircles of triangles $ABC$ and $BDE$ passes through point $F$.
(A. Kalinin)
2009 AMC 12/AHSME, 22
Parallelogram $ ABCD$ has area $ 1,\!000,\!000$. Vertex $ A$ is at $ (0,0)$ and all other vertices are in the first quadrant. Vertices $ B$ and $ D$ are lattice points on the lines $ y\equal{}x$ and $ y\equal{}kx$ for some integer $ k>1$, respectively. How many such parallelograms are there?
$ \textbf{(A)}\ 49\qquad
\textbf{(B)}\ 720\qquad
\textbf{(C)}\ 784\qquad
\textbf{(D)}\ 2009\qquad
\textbf{(E)}\ 2048$
2016 BAMO, 1
The diagram below is an example of a ${\textit{rectangle tiled by squares}}$:
[center][img]http://i.imgur.com/XCPQJgk.png[/img][/center]
Each square has been labeled with its side length. The squares fill the rectangle without overlapping. In a similar way, a rectangle can be tiled by nine squares whose side lengths are $2,5,7,9,16,25,28,33$, and $36$. Sketch one such possible arrangement of those squares. They must fill the rectangle without overlapping. Label each square in your sketch by its side length as in the picture above.
V Soros Olympiad 1998 - 99 (Russia), 10.4
A straight line tangent to a circle circumscribed about an isosceles triangle $ABC$ ($AB = AC$) at point $B$ intersects straight line $AC$ at point $P$, $E$ is the midpoint of $AB$ (fig.). What is the projection of $DE$ onto $AB$ if $PA = a$?
[img]https://cdn.artofproblemsolving.com/attachments/e/3/59c67e8f5eb3d399656d86613bc699c8baf1c1.png[/img]
2008 Junior Balkan Team Selection Tests - Moldova, 7
In an acute triangle $ABC$, points $A_1, B_1, C_1$ are the midpoints of the sides $BC, AC, AB$, respectively. It is known that $AA_1 = d(A_1, AB) + d(A_1, AC)$, $BB1 = d(B_1, AB) + d(A_1, BC)$, $CC_1 = d(C_1, AC) + d(C_1, BC)$, where $d(X, Y Z)$ denotes the distance from point $X$ to the line $YZ$. Prove, that triangle $ABC$ is equilateral.
2005 Flanders Junior Olympiad, 3
Prove that $2005^2$ can be written in at least $4$ ways as the sum of 2 perfect (non-zero) squares.
1998 Akdeniz University MO, 5
Let $ABCD$ a convex quadrilateral with $[BC]$ and $[CD]$'s midpoint is $P$ and $N$ respectively. If
$$[AP]+[AN]=d$$
Show that, area of the $ABCD$ is less then $\frac{1}{2}d^2$
1992 Romania Team Selection Test, 3
Let $ABCD$ be a tetrahedron; $B', C', D'$ be the midpoints of the edges $AB, AC, AD$; $G_A, G_B, G_C, G_D$ be the barycentres of the triangles $BCD, ACD, ABD, ABC$, and $G$ be the barycentre of the tetrahedron. Show that $A, G, G_B, G_C, G_D$ are all on a sphere if and only if $A, G, B', C', D'$ are also on a sphere.
[i]Dan Brânzei[/i]
2015 Bangladesh Mathematical Olympiad, 6
Trapezoid $ABCD$ has sides $AB=92,BC=50,CD=19,AD=70$ $AB$ is parallel to $CD$ A circle with center $P$ on $AB$ is drawn tangent to $BC$ and $AD$.Given that $AP=\dfrac mn$ (Where $m,n$ are relatively prime).What is $m+n$?
2002 National Olympiad First Round, 34
How many positive integers $n$ are there such that $3n^2 + 3n + 7$ is a perfect cube?
$
\textbf{a)}\ 0
\qquad\textbf{b)}\ 1
\qquad\textbf{c)}\ 3
\qquad\textbf{d)}\ 7
\qquad\textbf{e)}\ \text{Infinitely many}
$
2022 Vietnam National Olympiad, 3
Let $ABC$ be an acute triangle, $B,C$ fixed, $A$ moves on the big arc $BC$ of $(ABC)$. Let $O$ be the circumcenter of $(ABC)$ $(B,O,C$ are not collinear, $AB \ne AC)$, $(I)$ is the incircle of triangle $ABC$. $(I)$ tangents to $BC$ at $D$. Let $I_a$ be the $A$-excenter of triangle $ABC$. $I_aD$ cuts $OI$ at $L$. Let $E$ lies on $(I)$ such that $DE \parallel AI$.
a) $LE$ cuts $AI$ at $F$. Prove that $AF=AI$.
b) Let $M$ lies on the circle $(J)$ go through $I_a,B,C$ such that $I_aM \parallel AD$. $MD$ cuts $(J)$ again at $N$. Prove that the midpoint $T$ of $MN$ lies on a fixed circle.
2008 Bulgarian Autumn Math Competition, Problem 9.2
Given a $\triangle ABC$ and the altitude $CH$ ($H$ lies on the segment $AB$) and let $M$ be the midpoint of $AC$. Prove that if the circumcircle of $\triangle ABC$, $k$ and the circumcircle of $\triangle MHC$, $k_{1}$ touch, then the radius of $k$ is twice the radius of $k_{1}$.
2024 IFYM, Sozopol, 4
The diagonals \( AD \), \( BE \), and \( CF \) of a hexagon \( ABCDEF \) inscribed in a circle \( k \) intersect at a point \( P \), and the acute angle between any two of them is \( 60^\circ \). Let \( r_{AB} \) be the radius of the circle tangent to segments \( PA \) and \( PB \) and internally tangent to \( k \); the radii \( r_{BC} \), \( r_{CD} \), \( r_{DE} \), \( r_{EF} \), and \( r_{FA} \) are defined similarly. Prove that
\[
r_{AB}r_{CD} + r_{CD}r_{EF} + r_{EF}r_{AB} = r_{BC}r_{DE} + r_{DE}r_{FA} + r_{FA}r_{BC}.
\]
1992 India Regional Mathematical Olympiad, 5
$ABCD$ is a quadrilateral and $P,Q$ are the midpoints of $CD, AB, AP, DQ$ meet at $X$ and $BP, CQ$ meet at $Y$. Prove that $A[ADX]+A[BCY] = A[PXOY]$.
2018 Middle European Mathematical Olympiad, 5
Let $ABC$ be an acute-angled triangle with $AB<AC,$ and let $D$ be the foot of its altitude from$A,$ points $B'$ and $C'$ lie on the rays $AB$ and $AC,$ respectively , so that points $B',$ $C'$ and $D$ are collinear and points $B,$ $C,$ $B'$ and $C'$ lie on one circle with center $O.$ Prove that if $M$ is the midpoint of $BC$ and $H$ is the orthocenter of $ABC,$ then $DHMO$ is a parallelogram.
2010 Canadian Mathematical Olympiad Qualification Repechage, 8
Consider three parallelograms $P_1,~P_2,~ P_3$. Parallelogram $P_3$ is inside parallelogram $P_2$, and the vertices of $P_3$ are on the edges of $P_2$. Parallelogram $P_2$ is inside parallelogram $P_1$, and the vertices of $P_2$ are on the edges of $P_1$. The sides of $P_3$ are parallel to the sides of $P_1$. Prove that one side of $P_3$ has length at least half the length of the parallel side of $P_1$.
2003 Austrian-Polish Competition, 6
$ABCD$ is a tetrahedron such that we can find a sphere $k(A,B,C)$ through $A, B, C$ which meets the plane $BCD$ in the circle diameter $BC$, meets the plane $ACD$ in the circle diameter $AC$, and meets the plane $ABD$ in the circle diameter $AB$. Show that there exist spheres $k(A,B,D)$, $k(B,C,D)$ and $k(C,A,D)$ with analogous properties.
2013 Regional Competition For Advanced Students, 4
We call a pentagon [i]distinguished [/i] if either all side lengths or all angles are equal. We call it [i]very distinguished[/i] if in addition two of the other parts are equal. i.e. $5$ sides and $2$ angles or $2$ sides and $5$ angles.Show that every very distinguished pentagon has an axis of symmetry.
2014 IFYM, Sozopol, 7
In a convex quadrilateral $ABCD$, $\angle DAB=\angle BCD$ and the angle bisector of $\angle ABC$ passes through the middle point of $CD$. If $CD=3AD$, determine the ratio $\frac{AB}{BC}$.
2005 USAMO, 3
Let $ABC$ be an acute-angled triangle, and let $P$ and $Q$ be two points on its side $BC$. Construct a point $C_{1}$ in such a way that the convex quadrilateral $APBC_{1}$ is cyclic, $QC_{1}\parallel CA$, and $C_{1}$ and $Q$ lie on opposite sides of line $AB$. Construct a point $B_{1}$ in such a way that the convex quadrilateral $APCB_{1}$ is cyclic, $QB_{1}\parallel BA$, and $B_{1}$ and $Q$ lie on opposite sides of line $AC$. Prove that the points $B_{1}$, $C_{1}$, $P$, and $Q$ lie on a circle.
2002 National Olympiad First Round, 25
Let $E$ be a point on side $[AD]$ of rhombus $ABCD$. Lines $AB$ and $CE$ meet at $F$, lines $BE$ and $DF$ meet at $G$. If $m(\widehat{DAB}) = 60^\circ $, what is$m(\widehat{DGB})$?
$
\textbf{a)}\ 45^\circ
\qquad\textbf{b)}\ 50^\circ
\qquad\textbf{c)}\ 60^\circ
\qquad\textbf{d)}\ 65^\circ
\qquad\textbf{e)}\ 75^\circ
$
2006 AMC 8, 5
Points $ A, B, C$ and $ D$ are midpoints of the sides of the larger square. If the larger square has area 60, what is the area of the smaller square?
[asy]size(100);
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle,linewidth(1));
draw((0,1)--(1,2)--(2,1)--(1,0)--cycle);
label("$A$", (1,2), N);
label("$B$", (2,1), E);
label("$C$", (1,0), S);
label("$D$", (0,1), W);[/asy]
$ \textbf{(A)}\ 15 \qquad
\textbf{(B)}\ 20 \qquad
\textbf{(C)}\ 24 \qquad
\textbf{(D)}\ 30 \qquad
\textbf{(E)}\ 40$
2022 Oral Moscow Geometry Olympiad, 1
Given an isosceles trapezoid $ABCD$. The bisector of angle $B$ intersects the base $AD$ at point $L$. Prove that the center of the circle circumscribed around triangle $BLD$ lies on the circle circumscribed around the trapezoid.
(Yu. Blinkov)
2022 Sharygin Geometry Olympiad, 10.8
Let $ABCA'B'C'$ be a centrosymmetric octahedron (vertices $A$ and $A'$, $B$ and $B'$, $C$ and $C'$ are opposite) such that the sums of four planar angles equal $240^o$ for each vertex. The Torricelli points $T_1$ and $T_2$ of triangles $ABC$ and $A'BC$ are marked. Prove that the distances from $T_1$ and $T_2$ to $BC$ are equal.
2010 Contests, 3
Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[
R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\]
where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$