This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1992 All Soviet Union Mathematical Olympiad, 563

$A$ and $B$ lie on a circle. $P$ lies on the minor arc $AB$. $Q$ and $R$ (distinct from $P$) also lie on the circle, so that $P$ and $Q$ are equidistant from $A$, and $P$ and $R$ are equidistant from $B$. Show that the intersection of $AR$ and $BQ$ is the reflection of $P$ in $AB$.

2019 Iran RMM TST, 6

Tags: geometry
Let $ABCD $ be cyclic quadrilateral with circumcircle $\omega $ and $M $ be any point on $\omega $.\\ Let $E $ and $F $ be the intersection of $AB,CD $ and $AD,BC $ respectively.\\ $ME $ intersects lines $AD,BC $ at $P,Q $ and similarly $MF$ intersects lines $AB,CD $ at $R,S $.\\ Let the lines $PS $ and $RQ $ meet at $X $.\\ Prove that as $M $ varies over $\omega $\\ $MX $ passes through fixed point.\\ [i]Proposed by Mehdi Etesami Fard [/i]

Kvant 2024, M2823

A parabola $p$ is drawn on the coordinate plane — the graph of the equation $y =-x^2$, and a point $A$ is marked that does not lie on the parabola $p$. All possible parabolas $q$ of the form $y = x^2+ax+b$ are drawn through point $A$, intersecting $p$ at two points $X$ and $Y$ . Prove that all possible $XY$ lines pass through a fixed point in the plane. [i]P.A.Kozhevnikov[/i]

2001 Romania National Olympiad, 2

In the tetrahedron $OABC$ we denote by $\alpha,\beta,\gamma$ the measures of the angles $\angle BOC,\angle COA,$ and $\angle AOB$, respectively. Prove the inequality \[\cos^2\alpha+\cos^2\beta+\cos^2\gamma<1+2\cos\alpha\cos\beta\cos\gamma \]

2020 Bundeswettbewerb Mathematik, 3

Let $AB$ be the diameter of a circle $k$ and let $E$ be a point in the interior of $k$. The line $AE$ intersects $k$ a second time in $C \ne A$ and the line $BE$ intersects $k$ a second time in $D \ne B$. Show that the value of $AC \cdot AE+BD\cdot BE$ is independent of the choice of $E$.

2009 Sharygin Geometry Olympiad, 4

Let $ P$ and $ Q$ be the common points of two circles. The ray with origin $ Q$ reflects from the first circle in points $ A_1$, $ A_2$,$ \ldots$ according to the rule ''the angle of incidence is equal to the angle of reflection''. Another ray with origin $ Q$ reflects from the second circle in the points $ B_1$, $ B_2$,$ \ldots$ in the same manner. Points $ A_1$, $ B_1$ and $ P$ occurred to be collinear. Prove that all lines $ A_iB_i$ pass through P.

2019 Taiwan TST Round 1, 1

Tags: geometry
Given a triangle $ \triangle{ABC} $ with orthocenter $ H $. On its circumcenter, choose an arbitrary point $ P $ (other than $ A,B,C $) and let $ M $ be the mid-point of $ HP $. Now, we find three points $ D,E,F $ on the line $ BC, CA, AB $, respectively, such that $ AP \parallel HD, BP \parallel HE, CP \parallel HF $. Show that $ D, E, F, M $ are colinear.

Durer Math Competition CD 1st Round - geometry, 2019.D4

Let $ABC$ be an isosceles right-angled triangle, having the right angle at vertex $C$. Let us consider the line through $C$ which is parallel to $AB$ and let $D$ be a point on this line such that $AB = BD$ and $D$ is closer to $B$ than to $A$. Find the angle $\angle CBD$.

2004 Hong kong National Olympiad, 3

Tags: geometry
Points $P$ and $Q$ are taken sides $AB$ and $AC$ of a triangle $ABC$ respectively such that $\hat{APC}=\hat{AQB}=45^{0}$. The line through $P$ perpendicular to $AB$ intersects $BQ$ at $S$, and the line through $Q$ perpendicular to $AC$ intersects $CP$ at $R$. Let $D$ be the foot of the altitude of triangle $ABC$ from $A$. Prove that $SR\parallel BC$ and $PS,AD,QR$ are concurrent.

2013 Princeton University Math Competition, 8

Triangle $A_1B_1C_1$ is an equilateral triangle with sidelength $1$. For each $n>1$, we construct triangle $A_nB_nC_n$ from $A_{n-1}B_{n-1}C_{n-1}$ according to the following rule: $A_n,B_n,C_n$ are points on segments $A_{n-1}B_{n-1},B_{n-1}C_{n-1},C_{n-1}A_{n-1}$ respectively, and satisfy the following: \[\dfrac{A_{n-1}A_n}{A_nB_{n-1}}=\dfrac{B_{n-1}B_n}{B_nC_{n-1}}=\dfrac{C_{n-1}C_n}{C_nA_{n-1}}=\dfrac1{n-1}\] So for example, $A_2B_2C_2$ is formed by taking the midpoints of the sides of $A_1B_1C_1$. Now, we can write $\tfrac{|A_5B_5C_5|}{|A_1B_1C_1|}=\tfrac mn$ where $m$ and $n$ are relatively prime integers. Find $m+n$. (For a triangle $\triangle ABC$, $|ABC|$ denotes its area.)

2011 Sharygin Geometry Olympiad, 20

Quadrilateral $ABCD$ is circumscribed around a circle with center $I$. Points $M$ and $N$ are the midpoints of diagonals $AC$ and $BD$. Prove that $ABCD$ is cyclic quadrilateral if and only if $IM : AC = IN : BD$. [i]Nikolai Beluhov and Aleksey Zaslavsky[/i]

2019 Bangladesh Mathematical Olympiad, 7

Tags: geometry
Given three cocentric circles $\omega_1$,$\omega_2$,$\omega_3$ with radius $r_1,r_2,r_3$ such that $r_1+r_3\geq {2r_2}$.Constrat a line that intersects $\omega_1$,$\omega_2$,$\omega_3$ at $A,B,C$ respectively such that $AB=BC$.

2024 CMIMC Geometry, 6

Tags: geometry
Andrew Mellon found a piece of melon that is shaped like a octagonal prism where the bases are regular. Upon slicing it in half once, he found that he created a cross-section that is an equilateral hexagon. What is the minimum possible ratio of the height of the melon piece to the side length of the base? [i]Proposed by Lohith Tummala[/i]

2012 China Western Mathematical Olympiad, 1

$O$ is the circumcenter of acute $\Delta ABC$, $H$ is the Orthocenter. $AD \bot BC$, $EF$ is the perpendicular bisector of $AO$,$D,E$ on the $BC$. Prove that the circumcircle of $\Delta ADE$ through the midpoint of $OH$.

Estonia Open Junior - geometry, 2000.1.5

Find the total area of the shaded area in the figure if all circles have an equal radius $R$ and the centers of the outer circles divide into six equal parts of the middle circle. [img]http://3.bp.blogspot.com/-Ax0QJ38poYU/XovXkdaM-3I/AAAAAAAALvM/DAZGVV7TQjEnSf2y1mbnse8lL6YIg-BQgCK4BGAYYCw/s400/estonia%2B2000%2Bo.j.1.5.png[/img]

2019 ASDAN Math Tournament, 7

Tags: geometry
Consider a triangle $\vartriangle ABC$ with $AB = 7$, $BC = 8$, $CA = 9$, and area $12\sqrt5$. We draw squares on each sides, namely $BCD_2D_1$, $CAE_2E_1$ and $ABF_2F_1$, so that the interiors of the squares do not intersect the interior of the triangle. What is the area of $\vartriangle D_2E_2F_2$?

2011 AMC 10, 24

Two distinct regular tetrahedra have all their vertices among the vertices of the same unit cube. What is the volume of the region formed by the intersection of the tetrahedra? $ \textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{\sqrt{2}}{12}\qquad\textbf{(C)}\ \frac{\sqrt{3}}{12}\qquad\textbf{(D)}\ \frac{1}{6}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{6} $

2018 Nepal National Olympiad, 3c

Tags: geometry
[b]Problem Section #3 c) Let $ABCDE$ be a convex pentagon such that $BC \parallel AE, AB = BC + AE$, and $\angle{ABC} =\angle{CDE}$. Let $M$ be the midpoint of $CE$, and let $O$ be the circumcenter of triangle $BCD$. Given that $\angle{DMO}=90^{o}$, prove that $2\angle{BDA} =\angle{CDE}$.

1895 Eotvos Mathematical Competition, 3

Tags: ratio , geometry
Given the circumradius $R$ of a triangle, a side length $c$, and the ratio $a/b$ of the other two side lengths, determine all three sides and angles of this triangle.

2019 Tournament Of Towns, 2

Let $\omega$ be a circle with the center $O$ and $A$ and $C$ be two different points on $\omega$. For any third point $P$ of the circle let $X$ and $Y$ be the midpoints of the segments $AP$ and $CP$. Finally, let $H$ be the orthocenter (the point of intersection of the altitudes) of the triangle $OXY$ . Prove that the position of the point H does not depend on the choice of $P$. (Artemiy Sokolov)

2021 SAFEST Olympiad, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2010 Romania Team Selection Test, 4

Let $n$ be an integer number greater than or equal to $2$, and let $K$ be a closed convex set of area greater than or equal to $n$, contained in the open square $(0, n) \times (0, n)$. Prove that $K$ contains some point of the integral lattice $\mathbb{Z} \times \mathbb{Z}$. [i]Marius Cavachi[/i]

2023 Indonesia TST, 2

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$

2019 LIMIT Category B, Problem 1

Tags: geometry
Let $n\ge3$ be integer. Assume that inside a big circle, exactly $n$ small circles of radius $r$ can be drawn so that each small circle touches the big circle and also touches both its adjacent small circles. Then, the radius of big circle is $\textbf{(A)}~r\csc\frac{\pi}n$ $\textbf{(B)}~r\csc\left(1+\frac{2\pi}n\right)$ $\textbf{(C)}~r\csc\left(1+\frac{\pi}{2n}\right)$ $\textbf{(D)}~r\csc\left(1+\frac{\pi}n\right)$

LMT Speed Rounds, 2019 F

[b]p1.[/b] For positive real numbers $x, y$, the operation $\otimes$ is given by $x \otimes y =\sqrt{x^2 - y}$ and the operation $\oplus$ is given by $x \oplus y =\sqrt{x^2 + y}$. Compute $(((5\otimes 4)\oplus 3)\otimes2)\oplus 1$. [b]p2.[/b] Janabel is cutting up a pizza for a party. She knows there will either be $4$, $5$, or $6$ people at the party including herself, but can’t remember which. What is the least number of slices Janabel can cut her pizza to guarantee that everyone at the party will be able to eat an equal number of slices? [b]p3.[/b] If the numerator of a certain fraction is added to the numerator and the denominator, the result is $\frac{20}{19}$ . What is the fraction? [b]p4.[/b] Let trapezoid $ABCD$ be such that $AB \parallel CD$. Additionally, $AC = AD = 5$, $CD = 6$, and $AB = 3$. Find $BC$. [b]p5.[/b] AtMerrick’s Ice Cream Parlor, customers can order one of three flavors of ice cream and can have their ice cream in either a cup or a cone. Additionally, customers can choose any combination of the following three toppings: sprinkles, fudge, and cherries. How many ways are there to buy ice cream? [b]p6.[/b] Find the minimum possible value of the expression $|x+1|+|x-4|+|x-6|$. [b]p7.[/b] How many $3$ digit numbers have an even number of even digits? [b]p8.[/b] Given that the number $1a99b67$ is divisible by $7$, $9$, and $11$, what are $a$ and $b$? Express your answer as an ordered pair. [b]p9.[/b] Let $O$ be the center of a quarter circle with radius $1$ and arc $AB$ be the quarter of the circle’s circumference. Let $M$,$N$ be the midpoints of $AO$ and $BO$, respectively. Let $X$ be the intersection of $AN$ and $BM$. Find the area of the region enclosed by arc $AB$, $AX$,$BX$. [b]p10.[/b] Each square of a $5$-by-$1$ grid of squares is labeled with a digit between $0$ and $9$, inclusive, such that the sum of the numbers on any two adjacent squares is divisible by $3$. How many such labelings are possible if each digit can be used more than once? [b]p11.[/b] A two-digit number has the property that the difference between the number and the sum of its digits is divisible by the units digit. If the tens digit is $5$, how many different possible values of the units digit are there? [b]p12.[/b] There are $2019$ red balls and $2019$ white balls in a jar. One ball is drawn and replaced with a ball of the other color. The jar is then shaken and one ball is chosen. What is the probability that this ball is red? [b]p13.[/b] Let $ABCD$ be a square with side length $2$. Let $\ell$ denote the line perpendicular to diagonal $AC$ through point $C$, and let $E$ and $F$ be themidpoints of segments $BC$ and $CD$, respectively. Let lines $AE$ and $AF$ meet $\ell$ at points $X$ and $Y$ , respectively. Compute the area of $\vartriangle AXY$ . [b]p14.[/b] Express $\sqrt{21-6\sqrt6}+\sqrt{21+6\sqrt6}$ in simplest radical form. [b]p15.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length two. Let $D$ and $E$ be on $AB$ and $AC$ respectively such that $\angle ABE =\angle ACD = 15^o$. Find the length of $DE$. [b]p16.[/b] $2018$ ants walk on a line that is $1$ inch long. At integer time $t$ seconds, the ant with label $1 \le t \le 2018$ enters on the left side of the line and walks among the line at a speed of $\frac{1}{t}$ inches per second, until it reaches the right end and walks off. Determine the number of ants on the line when $t = 2019$ seconds. [b]p17.[/b] Determine the number of ordered tuples $(a_1,a_2,... ,a_5)$ of positive integers that satisfy $a_1 \le a_2 \le ... \le a_5 \le 5$. [b]p18.[/b] Find the sum of all positive integer values of $k$ for which the equation $$\gcd (n^2 -n -2019,n +1) = k$$ has a positive integer solution for $n$. [b]p19.[/b] Let $a_0 = 2$, $b_0 = 1$, and for $n \ge 0$, let $$a_{n+1} = 2a_n +b_n +1,$$ $$b_{n+1} = a_n +2b_n +1.$$ Find the remainder when $a_{2019}$ is divided by $100$. [b]p20.[/b] In $\vartriangle ABC$, let $AD$ be the angle bisector of $\angle BAC$ such that $D$ is on segment $BC$. Let $T$ be the intersection of ray $\overrightarrow{CB}$ and the line tangent to the circumcircle of $\vartriangle ABC$ at $A$. Given that $BD = 2$ and $TC = 10$, find the length of $AT$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].