This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

May Olympiad L2 - geometry, 2002.3

In a triangle $ABC$, right in $A$ and isosceles, let $D$ be a point on the side $AC$ ($A \ne D \ne C$) and $E$ be the point on the extension of $BA$ such that the triangle $ADE$ is isosceles. Let $P$ be the midpoint of segment $BD$, $R$ be the midpoint of the segment $CE$ and $Q$ the intersection point of $ED$ and $BC$. Prove that the quadrilateral $ARQP$ is a square.

2016 Auckland Mathematical Olympiad, 2

In square $ABCD$, $\overline{AC}$ and $\overline{BD}$ meet at point $E$. Point $F$ is on $\overline{CD}$ and $\angle CAF = \angle FAD$. If $\overline{AF}$ meets $\overline{ED}$ at point $G$, and if $\overline{EG} = 24$ cm, then find the length of $\overline{CF}$.

1999 Czech And Slovak Olympiad IIIA, 2

In a tetrahedron $ABCD, E$ and $F$ are the midpoints of the medians from $A$ and $D$. Find the ratio of the volumes of tetrahedra $BCEF$ and $ABCD$. Note: Median in a tetrahedron connects a vertex and the centroid of the opposite side.

1963 German National Olympiad, 6

Consider a pyramid $ABCD$ whose base $ABC$ is a triangle. Through a point $M$ of the edge $DA$, the lines $MN$ and $MP$ on the plane of the surfaces $DAB$ and $DAC$ are drawn respectively, such that $N$ is on $DB$ and $P$ is on $DC$ and $ABNM$ , $ACPM$ are cyclic quadrilaterals. a) Prove that $BCPN$ is also a cyclic quadrilateral. b) Prove that the points $A,B,C,M,N, P$ lie on a sphere.

2016 IMO Shortlist, G1

Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.

2014 AIME Problems, 8

Circle $C$ with radius $2$ has diameter $\overline{AB}$. Circle $D$ is internally tangent to circle $C$ at $A$. Circle $E$ is internally tangent to circle $C,$ externally tangent to circle $D,$ and tangent to $\overline{AB}$. The radius of circle $D$ is three times the radius of circle $E$ and can be written in the form $\sqrt{m} - n,$ where $m$ and $n$ are positive integers. Find $m+n$.

Durer Math Competition CD Finals - geometry, 2023.C3

$ABC$ is an isosceles triangle. The base $BC$ is $1$ cm long, and legs $AB$ and $AC$ are $2$ cm long. Let the midpoint of $AB$ be $F$, and the midpoint of $AC$ be $G$. Additionally, $k$ is a circle, that is tangent to $AB$ and A$C$, and it’s points of tangency are $F$ and $G$ accordingly. Prove, that the intersection of $CF$ and $BG$ falls on the circle $k$.

1966 IMO Longlists, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

2009 Serbia National Math Olympiad, 6

Triangle ABC has incircle w centered as S that touches the sides BC,CA and AB at P,Q and R respectively. AB isn't equal AC, the lines QR and BC intersects at point M, the circle that passes through points B and C touches the circle w at point N, circumcircle of triangle MNP intersects with line AP at L (L isn't equal to P). Then prove that S,L and M lie on the same line

Kvant 2019, M2577

Inside the acute-angled triangle $ABC$ we take $P$ and $Q$ two isogonal conjugate points. The perpendicular lines on the interior angle-bisector of $\angle BAC$ passing through $P$ and $Q$ intersect the segments $AC$ and $AB$ at the points $B_p\in AC$, $B_q\in AC$, $C_p\in AB$ and $C_q\in AB$, respectively. Let $W$ be the midpoint of the arc $BAC$ of the circle $(ABC)$. The line $WP$ intersects the circle $(ABC)$ again at $P_1$ and the line $WQ$ intersects the circle $(ABC)$ again at $Q_1$. Prove that the points $P_1$, $Q_1$, $B_p$, $B_q$, $C_p$ and $C_q$ lie on a circle. [i]Proposed by P. Bibikov[/i]

2018 Kyiv Mathematical Festival, 5

A circle is divided by $2019$ points into equal parts. Two players delete these points in turns. A player wins, if after his turn it is possible to draw a diameter of the circle such that there are no undeleted points on one side of it. Which player has a winning strategy?

1999 Vietnam National Olympiad, 2

let a triangle ABC and A',B',C' be the midpoints of the arcs BC,CA,AB respectively of its circumcircle. A'B',A'C' meets BC at $ A_1,A_2$ respectively. Pairs of point $ (B_1,B_2),(C_1,C_2)$ are similarly defined. Prove that $ A_1A_2 \equal{} B_1B_2 \equal{} C_1C_2$ if and only if triangle ABC is equilateral.

2016 South East Mathematical Olympiad, 2

Tags: geometry
Suppose $PAB$ and $PCD$ are two secants of circle $O$. Lines $AD \cap BC=Q$. Point $T$ lie on segment $BQ$ and point $K$ is intersection of segment $PT$ with circle $O$, $S=QK\cap PA$ Given that $ST \parallel PQ$, prove that $B,S,K,T$ lie on a circle.

LMT Speed Rounds, 2015

[b]p1.[/b] What is $\sqrt[2015]{2^01^5}$? [b]p2.[/b] What is the ratio of the area of square $ABCD$ to the area of square $ACEF$? [b]p3.[/b] $2015$ in binary is $11111011111$, which is a palindrome. What is the last year which also had this property? [b]p4.[/b] What is the next number in the following geometric series: $1020100$, $10303010$, $104060401$? [b]p5.[/b] A circle has radius $A$ and area $r$. If $A = r^2\pi$, then what is the diameter, $C$, of the circle? [b]p6.[/b] If $$O + N + E = 1$$ $$T + H + R + E + E = 3$$ $$N + I + N + E = 9$$ $$T + E + N = 10$$ $$T + H + I + R + T + E + E + N = 13$$ Then what is the value of $O$? [b]p7.[/b] By shifting the initial digit, which is $6$, of the positive integer $N$ to the end (for example, $65$ becomes $56$), we obtain a number equal to $\frac{N}{4}$ . What is the smallest such $N$? [b]p8.[/b] What is $\sqrt[3]{\frac{2015!(2013!)+2014!(2012!)}{2013!(2012!)}}$ ? [b]p9.[/b] How many permutations of the digits of $1234$ are divisible by $11$? [b]p10.[/b] If you choose $4$ cards from a normal $52$ card deck (with replacement), what is the probability that you will get exactly one of each suit (there are $4$ suits)? [b]p11.[/b] If $LMT$ is an equilateral triangle, and $MATH$ is a square, such that point $A$ is in the triangle, then what is $HL/AL$? [b]p12.[/b] If $$\begin{tabular}{cccccccc} & & & & & L & H & S\\ + & & & & H & I & G & H \\ + & & S & C & H & O & O & L \\ \hline = & & S & O & C & O & O & L \\ \end{tabular}$$ and $\{M, A, T,H, S, L,O, G, I,C\} = \{0, 1, 2, 3,4, 5, 6, 7, 8, 9\} $, then what is the ordered pair $(M + A +T + H, [T + e + A +M])$ where $e$ is $2.718...$and $[n]$ is the greatest integer less than or equal to $n$ ? [b]p13.[/b] There are $5$ marbles in a bag. One is red, one is blue, one is green, one is yellow, and the last is white. There are $4$ people who take turns reaching into the bag and drawing out a marble without replacement. If the marble they draw out is green, they get to draw another marble out of the bag. What is the probability that the $3$rd person to draw a marble gets the white marble? [b]p14.[/b] Let a "palindromic product" be a product of numbers which is written the same when written back to front, including the multiplication signs. For example, $234 * 545 * 432$, $2 * 2 *2 *2$, and $14 * 41$ are palindromic products whereas $2 *14 * 4 * 12$, $567 * 567$, and $2* 2 * 3* 3 *2$ are not. 2015 can be written as a "palindromic product" in two ways, namely $13 * 5 * 31$ and $31 * 5 * 13$. How many ways can you write $2016$ as a palindromic product without using 1 as a factor? [b]p15.[/b] Let a sequence be defined as $S_n = S_{n-1} + 2S_{n-2}$, and $S_1 = 3$ and $S_2 = 4$. What is $\sum_{n=1}^{\infty}\frac{S_n}{3^n}$ ? [b]p16.[/b] Put the numbers $0-9$ in some order so that every $2$-digit substring creates a number which is either a multiple of $7$, or a power of $2$. [b]p17.[/b] Evaluate $\dfrac{8+ \dfrac{8+ \dfrac{8+...}{3+...}}{3+ \dfrac{8+...}{3+...}}}{3+\dfrac{8+ \dfrac{8+...}{3+...}}{ 3+ \dfrac{8+...}{3+...}}}$, assuming that it is a positive real number. [b]p18.[/b] $4$ non-overlapping triangles, each of area $A$, are placed in a unit circle. What is the maximum value of $A$? [b]p19.[/b] What is the sum of the reciprocals of all the (positive integer) factors of $120$ (including $1$ and $120$ itself). [b]p20.[/b] How many ways can you choose $3$ distinct elements of $\{1, 2, 3,...,4000\}$ to make an increasing arithmetic series? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Estonia Open Senior - geometry, 1998.1.2

Prove that the parallelogram $ABCD$ with relation $\angle ABD + \angle DAC = 90^o$, is either a rectangle or a rhombus.

2008 Sharygin Geometry Olympiad, 7

(A.Zaslavsky) The circumradius of triangle $ ABC$ is equal to $ R$. Another circle with the same radius passes through the orthocenter $ H$ of this triangle and intersect its circumcirle in points $ X$, $ Y$. Point $ Z$ is the fourth vertex of parallelogram $ CXZY$. Find the circumradius of triangle $ ABZ$.

Russian TST 2017, P2

Tags: geometry , incenter
An acute triangle $\triangle ABC$ has incenter $I$, and the incircle hits $BC, CA, AB$ at $D, E, F$. Lines $BI, CI, BC, DI$ hits $EF$ at $K, L, M, Q$ and the line connecting the midpoint of segment $CL$ and $M$ hits the line segment $CK$ at $P$. Prove that $$PQ=\frac{AB \cdot KQ}{BI}$$

2008 Polish MO Finals, 5

Tags: geometry
Let $ R$ be a parallelopiped. Let us assume that areas of all intersections of $ R$ with planes containing centers of three edges of $ R$ pairwisely not parallel and having no common points, are equal. Show that $ R$ is a cuboid.

2024 Regional Olympiad of Mexico West, 2

Let $\triangle ABC$ be a triangle and $H$ its orthocenter. We draw the circumference $\mathcal{C}_1$ that passes through $H$ and its tangent to $BC$ at $B$ and the circumference $\mathcal{C}_2$ that passes through $H$ and its tangent to $BC$ at $C$. If $\mathcal{C}_1$ cuts line $AB$ again at $X$ and $\mathcal{C}_2$ cuts line $AC$ again at $Y$. Prove that $X,Y$ and $H$ are collinear.

2014 Junior Balkan Team Selection Tests - Romania, 5

Let $D$ and $E$ be the midpoints of sides $[AB]$ and $[AC]$ of the triangle $ABC$. The circle of diameter $[AB]$ intersects the line $DE$ on the opposite side of $AB$ than $C$, in $X$. The circle of diameter $[AC]$ intersects $DE$ on the opposite side of $AC$ than $B$ in $Y$ . Let $T$ be the intersection of $BX$ and $CY$. Prove that the orthocenter of triangle $XY T$ lies on $BC$.

2010 Regional Olympiad of Mexico Center Zone, 1

In the acute triangle $ABC$, $\angle BAC$ is less than $\angle ACB $. Let $AD$ be a diameter of $\omega$, the circle circumscribed to said triangle. Let $E$ be the point of intersection of the ray $AC$ and the tangent to $\omega$ passing through $B$. The perpendicular to $AD$ that passes through $E$ intersects the circle circumscribed to the triangle $BCE$, again, at the point $F$. Show that $CD$ is an angle bisector of $\angle BCF$.

2010 Contests, 3

The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. [i]Author: Arnoldo Aguilar, El Salvador[/i]

1998 All-Russian Olympiad, 1

The angle formed by the rays $y=x$ and $y=2x$ ($x \ge 0$) cuts off two arcs from a given parabola $y=x^2+px+q$. Prove that the projection of one arc onto the $x$-axis is shorter by $1$ than that of the second arc.

2001 Bulgaria National Olympiad, 1

Let $n \geq 2$ be a given integer. At any point $(i, j)$ with $i, j \in\mathbb{ Z}$ we write the remainder of $i+j$ modulo $n$. Find all pairs $(a, b)$ of positive integers such that the rectangle with vertices $(0, 0)$, $(a, 0)$, $(a, b)$, $(0, b)$ has the following properties: [b](i)[/b] the remainders $0, 1, \ldots , n-1$ written at its interior points appear the same number of times; [b](ii)[/b] the remainders $0, 1, \ldots , n -1$ written at its boundary points appear the same number of times.

2011 Bulgaria National Olympiad, 1

Point $O$ is inside $\triangle ABC$. The feet of perpendicular from $O$ to $BC,CA,AB$ are $D,E,F$. Perpendiculars from $A$ and $B$ respectively to $EF$ and $FD$ meet at $P$. Let $H$ be the foot of perpendicular from $P$ to $AB$. Prove that $D,E,F,H$ are concyclic.