This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2019 India Regional Mathematical Olympiad, 5

Tags: geometry
In an acute angled triangle $ABC$, let $H$ be the orthocenter, and let $D,E,F$ be the feet of altitudes from $A,B,C$ to the opposite sides, respectively. Let $L,M,N$ be the midpoints of the segments $AH, EF, BC$ respectively. Let $X,Y$ be the feet of altitudes from $L,N$ on to the line $DF$ respectively. Prove that $XM$ is perpendicular to $MY$.

1991 Spain Mathematical Olympiad, 4

Tags: incircle , geometry , angle
The incircle of $ABC$ touches the sides $BC,CA,AB$ at $A' ,B' ,C'$ respectively. The line $A' C'$ meets the angle bisector of $\angle A$ at $D$. Find $\angle ADC$.

2016 Junior Balkan Team Selection Tests - Romania, 1

Tags: geometry
The altitudes $AA_1$,$BB_1$,$CC_1$ of $\triangle{ABC}$ intersect at $H$.$O$ is the circumcenter of $\triangle{ABC}$.Let $A_2$ be the reflection of $A$ wrt $B_1C_1$.Prove that: a)$O$,$A_2$,$B_1$,$C$ are all on a circle b)$O$,$H$,$A_1$,$A_2$ are all on a circle

2014 Sharygin Geometry Olympiad, 5

The altitude from one vertex of a triangle, the bisector from the another one and the median from the remaining vertex were drawn, the common points of these three lines were marked, and after this everything was erased except three marked points. Restore the triangle. (For every two erased segments, it is known which of the three points was their intersection point.) (A. Zaslavsky)

1948 Moscow Mathematical Olympiad, 150

Tags: geometry , symmetry
Can a figure have a greater than $1$ and finite number of centers of symmetry?

2006 National Olympiad First Round, 5

Tags: geometry , symmetry
Let $D$ be a point on the side $[BC]$ of $\triangle ABC$ such that $|AB|+|BD|=|AC|$ and $m(\widehat{BAD})=m(\widehat{DAC})=30^\circ$. What is $m(\widehat{ACB})$? $ \textbf{(A)}\ 30^\circ \qquad\textbf{(B)}\ 40^\circ \qquad\textbf{(C)}\ 45^\circ \qquad\textbf{(D)}\ 48^\circ \qquad\textbf{(E)}\ 50^\circ $

1969 Polish MO Finals, 5

For which values of n does there exist a polyhedron having $n$ edges?

2012 Grigore Moisil Intercounty, 1

For $ x\in\mathbb{R} , $ determine the minimum of $ \sqrt{(x-1)^2+\left( x^2-5\right)^2} +\sqrt{(x+2)^2+\left( x^2+1 \right)^2} $ and the maximum of $ \sqrt{(x-1)^2+\left( x^2-5\right)^2} -\sqrt{(x+2)^2+\left( x^2+1 \right)^2} . $ [i]Vasile Pop[/i]

1936 Moscow Mathematical Olympiad, 025

Consider a circle and a point $P$ outside the circle. The angle of given measure with vertex at $P$ subtends a diameter of the circle. Construct the circle’s diameter with ruler and compass.

1984 Canada National Olympiad, 2

Alice and Bob are in a hardware store. The store sells coloured sleeves that fit over keys to distinguish them. The following conversation takes place: [color=#0000FF]Alice:[/color] Are you going to cover your keys? [color=#FF0000]Bob:[/color] I would like to, but there are only $7$ colours and I have $8$ keys. [color=#0000FF]Alice:[/color] Yes, but you could always distinguish a key by noticing that the red key next to the green key was different from the red key next to the blue key. [color=#FF0000]Bob:[/color] You must be careful what you mean by "[i]next to[/i]" or "[i]three keys over from[/i]" since you can turn the key ring over and the keys are arranged in a circle. [color=#0000FF]Alice:[/color] Even so, you don't need $8$ colours. [b]Problem:[/b] What is the smallest number of colours needed to distinguish $n$ keys if all the keys are to be covered.

1950 Moscow Mathematical Olympiad, 173

On a chess board, the boundaries of the squares are assumed to be black. Draw a circle of the greatest possible radius lying entirely on the black squares.

2017 Balkan MO Shortlist, G8

Given an acute triangle $ABC$ ($AC\ne AB$) and let $(C)$ be its circumcircle. The excircle $(C_1)$ corresponding to the vertex $A$, of center $I_a$, tangents to the side $BC$ at the point $D$ and to the extensions of the sides $AB,AC$ at the points $E,Z$ respectively. Let $I$ and $L$ are the intersection points of the circles $(C)$ and $(C_1)$, $H$ the orthocenter of the triangle $EDZ$ and $N$ the midpoint of segment $EZ$. The parallel line through the point $l_a$ to the line $HL$ meets the line $HI$ at the point $G$. Prove that the perpendicular line $(e)$ through the point $N$ to the line $BC$ and the parallel line $(\delta)$ through the point $G$ to the line $IL$ meet each other on the line $HI_a$.

2022 Thailand TST, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2018 Brazil Team Selection Test, 3

Tags: geometry , incenter
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

2012 IFYM, Sozopol, 7

A quadrilateral $ABCD$ is inscribed in a circle with center $O$. Let $A_1 B_1 C_1 D_1$ be the image of $ABCD$ after rotation with center $O$ and angle $\alpha \in (0,90^\circ)$. The points $P,Q,R$ and $S$ are intersections of $AB$ and $A_1 B_1$, $BC$ and $B_1 C_1$, $CD$ and $C_1 D_1$, and $DA$ and $D_1 A_1$. Prove that $PQRS$ is a parallelogram.

1986 IMO Longlists, 17

We call a tetrahedron right-faced if each of its faces is a right-angled triangle. [i](a)[/i] Prove that every orthogonal parallelepiped can be partitioned into six right-faced tetrahedra. [i](b)[/i] Prove that a tetrahedron with vertices $A_1,A_2,A_3,A_4$ is right-faced if and only if there exist four distinct real numbers $c_1, c_2, c_3$, and $c_4$ such that the edges $A_jA_k$ have lengths $A_jA_k=\sqrt{|c_j-c_k|}$ for $1\leq j < k \leq 4.$

2009 IMO Shortlist, 6

Let the sides $AD$ and $BC$ of the quadrilateral $ABCD$ (such that $AB$ is not parallel to $CD$) intersect at point $P$. Points $O_1$ and $O_2$ are circumcenters and points $H_1$ and $H_2$ are orthocenters of triangles $ABP$ and $CDP$, respectively. Denote the midpoints of segments $O_1H_1$ and $O_2H_2$ by $E_1$ and $E_2$, respectively. Prove that the perpendicular from $E_1$ on $CD$, the perpendicular from $E_2$ on $AB$ and the lines $H_1H_2$ are concurrent. [i]Proposed by Eugene Bilopitov, Ukraine[/i]

2012 Hanoi Open Mathematics Competitions, 12

Tags: geometry
In an isosceles triangle ABC with the base AB given a point M $\in$ BC: Let O be the center of its circumscribed circle and S be the center of the inscribed circle in ABC and SM // AC: Prove that OM perpendicular BS.

2013 IFYM, Sozopol, 7

Tags: geometry
Let $O$ be the center of the inscribed circle of $\Delta ABC$ and point $D$ be the middle point of $AB$. If $\angle AOD=90^\circ$, prove that $AB+BC=3AC$.

2021 Iberoamerican, 2

Consider an acute-angled triangle $ABC$, with $AC>AB$, and let $\Gamma$ be its circumcircle. Let $E$ and $F$ be the midpoints of the sides $AC$ and $AB$, respectively. The circumcircle of the triangle $CEF$ and $\Gamma$ meet at $X$ and $C$, with $X\neq C$. The line $BX$ and the tangent to $\Gamma$ through $A$ meet at $Y$. Let $P$ be the point on segment $AB$ so that $YP = YA$, with $P\neq A$, and let $Q$ be the point where $AB$ and the parallel to $BC$ through $Y$ meet each other. Show that $F$ is the midpoint of $PQ$.

2007 Sharygin Geometry Olympiad, 4

Does a parallelogram exist such that all pairwise meets of bisectors of its angles are situated outside it?

2012 USAMTS Problems, 3

In quadrilateral $ABCD$, $\angle DAB=\angle ABC=110^{\circ}$, $\angle BCD=35^{\circ}$, $\angle CDA=105^{\circ}$, and $AC$ bisects $\angle DAB$. Find $\angle ABD$.

1973 IMO Shortlist, 3

Prove that the sum of an odd number of vectors of length 1, of common origin $O$ and all situated in the same semi-plane determined by a straight line which goes through $O,$ is at least 1.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.2

Given a rectangle $ABCD$ with $AB> BC$. On the side $CD$, take a point $L$ such that $BL$ and $AC$ are perpendicular. Let $K$ be the intersection point of segments $BL$ and $AC$. It is known that segments $AL$. and $DK$ are perpendicular. Find $\angle ACB.$

2024 Greece National Olympiad, 2

Tags: geometry
Let $ABC$ be a triangle with $AB<AC<BC$ with circumcircle $\Gamma_1$. The circle $\Gamma_2$ has center $D$ lying on $\Gamma_1$ and touches $BC$ at $E$ and the extension of $AB$ at $F$. Let $\Gamma_1$ and $\Gamma_2$ meet at $K, G$ and the line $KG$ meets $EF$ and $CD$ at $M, N$. Show that $BCNM$ is cyclic.