Found problems: 25757
2023 Durer Math Competition (First Round), 5
Consider an acute triangle $ABC$. Let $D$, $E$ and $F$ be the feet of the altitudes through vertices $A$, $B$ and $C$. Denote by $A'$, $B'$, $C'$ the projections of $A$, $B$, $C$ onto lines $EF$, $FD$, $DE$, respectively. Further, let $H_D$, $H_E$, $H_F$ be the orthocenters of triangles $DB'C'$, $EC'A'$, $FA'B'$. Show that $$H_DB^2 + H_EC^2 + H_FA^2 = H_DC^2 + H_EA^2 + H_FB^2.$$
2020 Ukrainian Geometry Olympiad - April, 5
Inside the convex quadrilateral $ABCD$ there is a point $M$ such that $\angle AMB = \angle ADM + \angle BCM$ and $\angle AMD = \angle ABM + \angle DCM$. Prove that $AM \cdot CM + BM \cdot DM \ge \sqrt{AB \cdot BC\cdot CD \cdot DA}$
2009 May Olympiad, 2
Let $ABCD$ be a convex quadrilateral such that the triangle $ABD$ is equilateral and the triangle $BCD$ is isosceles, with $\angle C = 90^o$. If $E$ is the midpoint of the side $AD$, determine the measure of the angle $\angle CED$.
Kettering MO, 2003
[b]p1.[/b] How many real solutions does the following system of equations have? Justify your answer.
$$x + y = 3$$
$$3xy -z^2 = 9$$
[b]p2.[/b] After the first year the bank account of Mr. Money decreased by $25\%$, during the second year it increased by $20\%$, during the third year it decreased by $10\%$, and during the fourth year it increased by $20\%$. Does the account of Mr. Money increase or decrease during these four years and how much?
[b]p3.[/b] Two circles are internally tangent. A line passing through the center of the larger circle intersects it at the points $A$ and $D$. The same line intersects the smaller circle at the points $B$ and $C$. Given that $|AB| : |BC| : |CD| = 3 : 7 : 2$, find the ratio of the radiuses of the circles.
[b]p4.[/b] Find all integer solutions of the equation $\frac{1}{x}+\frac{1}{y}=\frac{1}{19}$
[b]p5.[/b] Is it possible to arrange the numbers $1, 2, . . . , 12$ along the circle so that the absolute value of the difference between any two numbers standing next to each other would be either $3$, or $4$, or $5$? Prove your answer.
[b]p6.[/b] Nine rectangles of the area $1$ sq. mile are located inside the large rectangle of the area $5$ sq. miles. Prove that at least two of the rectangles (internal rectangles of area $1$ sq. mile) overlap with an overlapping area greater than or equal to $\frac19$ sq. mile
PS. You should use hide for answers.
2024 Sharygin Geometry Olympiad, 1
Bisectors $AI$ and $CI$ meet the circumcircle of triangle $ABC$ at points $A_1, C_1$ respectively.
The circumcircle of triangle $AIC_1$ meets $AB$ at point $C_0$; point $A_0$ is defined similarly.
Prove that $A_0, A_1, C_0, C_1$ are collinear.
2015 Sharygin Geometry Olympiad, P15
The sidelengths of a triangle $ABC$ are not greater than $1$. Prove that $p(1 -2Rr)$ is not greater than $1$, where $p$ is the semiperimeter, $R$ and $r$ are the circumradius and the inradius of $ABC$.
2012 Romania National Olympiad, 2
In the plane $xOy$, a lot of points are considered
$$X = \{P (a, b) | (a, b) \in \{1, 2,..., 10\} \times \{1, 2,..., 10 \}\}$$
Determine the number of different lines that can be obtained by joining two of them between the points of the set $X$; so that any two lines are not parallel.
1948 Putnam, B6
Answer wither (i) or (ii):
(i) Let $V, V_1 , V_2$ and $V_3$ denote four vertices of a cube such that $V_1 , V_2 , V_3 $ are adjacent to $V.$ Project the cube orthogonally on a plane of which the points are marked with complex numbers. Let the projection of $V$ fall in the origin and the projections of $V_1 , V_2 , V_3 $ in points marked with the complex numbers $z_1 , z_2 , z_3$, respectively. Show that $z_{1}^{2} +z_{2}^{2} +z_{3}^{2}=0.$
(ii) Let $(a_{ij})$ be a matrix such that
$$|a_{ii}| > |a_{i1}| + |a_{i2}|+\ldots +|a_{i i-1}|+ |a_{i i+1}| +\ldots +|a_{in}|$$
for all $i.$ Show that the determinant is not equal to $0.$
2019 Brazil Team Selection Test, 1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2008 Hanoi Open Mathematics Competitions, 7
The figure $ABCDE$ is a convex pentagon. Find the sum $\angle DAC + \angle EBD +\angle ACE +\angle BDA + \angle CEB$?
2010 China Team Selection Test, 2
Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.
1969 IMO Longlists, 9
$(BUL 3)$ One hundred convex polygons are placed on a square with edge of length $38 cm.$ The area of each of the polygons is smaller than $\pi cm^2,$ and the perimeter of each of the polygons is smaller than $2\pi cm.$ Prove that there exists a disk with radius $1$ in the square that does not intersect any of the polygons.
Today's calculation of integrals, 895
In the coordinate plane, suppose that the parabola $C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)$ touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of $y\geq 0$ of $C$ and the $x$-axis.
ABMC Online Contests, 2018 Nov
[b]p1.[/b] How many lines of symmetry does a square have?
[b]p2.[/b] Compute$ 1/2 + 1/6 + 1/12 + 1/4$.
[b]p3.[/b] What is the maximum possible area of a rectangle with integer side lengths and perimeter $8$?
[b]p4.[/b] Given that $1$ printer weighs $400000$ pennies, and $80$ pennies weighs $2$ books, what is the weight of a printer expressed in books?
[b]p5.[/b] Given that two sides of a triangle are $28$ and $3$ and all three sides are integers, what is the sum of the possible lengths of the remaining side?
[b]p6.[/b] What is half the sum of all positive integers between $1$ and $15$, inclusive, that have an even number of positive divisors?
[b]p7.[/b] Austin the Snowman has a very big brain. His head has radius $3$, and the volume of his torso is one third of his head, and the volume of his legs combined is one third of his torso. If Austin's total volume is $a\pi$ where $a$ is an integer, what is $a$?
[b]p8.[/b] Neethine the Kiwi says that she is the eye of the tiger, a fighter, and that everyone is gonna hear her roar. She is standing at point $(3, 3)$. Neeton the Cat is standing at $(11,18)$, the farthest he can stand from Neethine such that he can still hear her roar. Let the total area of the region that Neeton can stand in where he can hear Neethine's roar be $a\pi$ where $a$ is an integer. What is $a$?
[b]p9.[/b] Consider $2018$ identical kiwis. These are to be divided between $5$ people, such that the first person gets $a_1$ kiwis, the second gets $a_2$ kiwis, and so forth, with $a_1 \le a_2 \le a_3 \le a_4 \le a_5$. How many tuples $(a_1, a_2, a_3, a_4, a_5)$ can be chosen such that they form an arithmetic sequence?
[b]p10.[/b] On the standard $12$ hour clock, each number from $1$ to $12$ is replaced by the sum of its divisors. On this new clock, what is the number of degrees in the measure of the non-reflex angle between the hands of the clock at the time when the hour hand is between $7$ and $6$ while the minute hand is pointing at $15$?
[b]p11.[/b] In equiangular hexagon $ABCDEF$, $AB = 7$, $BC = 3$, $CD = 8$, and $DE = 5$. The area of the hexagon is in the form $\frac{a\sqrt{b}}{c}$ with $b$ square free and $a$ and $c$ relatively prime. Find $a+b+c$ where $a, b,$ and $c$ are integers.
[b]p12.[/b] Let $\frac{p}{q} = \frac15 + \frac{2}{5^2} + \frac{3}{5^3} + ...$ . Find $p + q$, where $p$ and $q$ are relatively prime positive integers.
[b]p13.[/b] Two circles $F$ and $G$ with radius $10$ and $4$ respectively are externally tangent. A square $ABMC$ is inscribed in circle $F$ and equilateral triangle $MOP$ is inscribed in circle $G$ (they share vertex $M$). If the area of pentagon $ABOPC$ is equal to $a + b\sqrt{c}$, where $a$, $b$, $c$ are integers $c$ is square free, then find $a + b + c$.
[b]p14.[/b] Consider the polynomial $P(x) = x^3 + 3x^2 + ax + 8$. Find the sum of all integer $a$ such that the sum of the squares of the roots of $P(x)$ divides the sum of the coecients of $P(x)$.
[b]p15.[/b] Nithin and Antonio play a number game. At the beginning of the game, Nithin picks a prime $p$ that is less than $100$. Antonio then tries to find an integer $n$ such that $n^6 + 2n^5 + 2n^4 + n^3 + (n^2 + n + 1)^2$ is a multiple of $p$. If Antonio can find such a number n, then he wins, otherwise, he loses. Nithin doesn't know what he is doing, and he always picks his prime randomly while Antonio always plays optimally. The probability of Antonio winning is $a/b$ where $a$ and $b$ are relatively prime positive integers. Find$a + b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1999 Federal Competition For Advanced Students, Part 2, 2
Let $\epsilon$ be a plane and $k_1, k_2, k_3$ be spheres on the same side of $\epsilon$. The spheres $k_1, k_2, k_3$ touch the plane at points $T_1, T_2, T_3$, respectively, and $k_2$ touches $k_1$ at $S_1$ and $k_3$ at $S_3$. Prove that the lines $S_1T_1$ and $S_3T_3$ intersect on the sphere $k_2$. Describe the locus of the intersection point.
2002 Spain Mathematical Olympiad, Problem 2
In the triangle $ABC$, $A'$ is the foot of the altitude to $A$, and $H$ is the orthocenter.
$a)$ Given a positive real number $k = \frac{AA'}{HA'}$ , find the relationship between the angles $B$ and $C$, as a function of $k$.
$b)$ If $B$ and $C$ are fixed, find the locus of the vertice $A$ for any value of $k$.
2006 Germany Team Selection Test, 2
Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle.
[i]Proposed by Dimitris Kontogiannis, Greece[/i]
EMCC Accuracy Rounds, 2012
[b]p1.[/b] An $18$oz glass of apple juice is $6\%$ sugar and a $6$oz glass of orange juice is $12\%$ sugar. The two glasses are poured together to create a cocktail. What percent of the cocktail is sugar?
[b]p2.[/b] Find the number of positive numbers that can be expressed as the difference of two integers between $-2$ and $2012$ inclusive.
[b]p3.[/b] An annulus is defined as the region between two concentric circles. Suppose that the inner circle of an annulus has radius $2$ and the outer circle has radius $5$. Find the probability that a randomly chosen point in the annulus is at most $3$ units from the center.
[b]p4.[/b] Ben and Jerry are walking together inside a train tunnel when they hear a train approaching. They decide to run in opposite directions, with Ben heading towards the train and Jerry heading away from the train. As soon as Ben finishes his $1200$ meter dash to the outside, the front of the train enters the tunnel. Coincidentally, Jerry also barely survives, with the front of the train exiting the tunnel as soon as he does. Given that Ben and Jerry both run at $1/9$ of the train’s speed, how long is the tunnel in meters?
[b]p5.[/b] Let $ABC$ be an isosceles triangle with $AB = AC = 9$ and $\angle B = \angle C = 75^o$. Let $DEF$ be another triangle congruent to $ABC$. The two triangles are placed together (without overlapping) to form a quadrilateral, which is cut along one of its diagonals into two triangles. Given that the two resulting triangles are incongruent, find the area of the larger one.
[b]p6.[/b] There is an infinitely long row of boxes, with a Ditto in one of them. Every minute, each existing Ditto clones itself, and the clone moves to the box to the right of the original box, while the original Ditto does not move. Eventually, one of the boxes contains over $100$ Dittos. How many Dittos are in that box when this first happens?
[b]p7.[/b] Evaluate $$26 + 36 + 998 + 26 \cdot 36 + 26 \cdot 998 + 36 \cdot 998 + 26 \cdot 36 \cdot 998.$$
[b]p8. [/b]There are $15$ students in a school. Every two students are either friends or not friends. Among every group of three students, either all three are friends with each other, or exactly one pair of them are friends. Determine the minimum possible number of friendships at the school.
[b]p9.[/b] Let $f(x) = \sqrt{2x + 1 + 2\sqrt{x^2 + x}}$. Determine the value of $$\frac{1}{f(1)}+\frac{1}{f(1)}+\frac{1}{f(3)}+...+\frac{1}{f(24)}.$$
[b]p10.[/b] In square $ABCD$, points $E$ and $F$ lie on segments $AD$ and $CD$, respectively. Given that $\angle EBF = 45^o$, $DE = 12$, and $DF = 35$, compute $AB$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2007 May Olympiad, 5
You have a paper pentagon, $ABCDE$, such that $AB = BC = 3$ cm, $CD = DE= 5$ cm, $EA = 4$ cm, $\angle ABC = 100^o$ ,$ \angle CDE = 80^o$. You have to divide the pentagon into four triangles, by three straight cuts, so that with the four triangles assemble a rectangle, without gaps or overlays. (The triangles can be rotated and / or turned around.)
2013 ELMO Shortlist, 3
In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$.
[i]Proposed by Allen Liu[/i]
2009 AMC 12/AHSME, 25
The set $ G$ is defined by the points $ (x,y)$ with integer coordinates, $ 3\le|x|\le7$, $ 3\le|y|\le7$. How many squares of side at least $ 6$ have their four vertices in $ G$?
[asy]defaultpen(black+0.75bp+fontsize(8pt));
size(5cm);
path p = scale(.15)*unitcircle;
draw((-8,0)--(8.5,0),Arrow(HookHead,1mm));
draw((0,-8)--(0,8.5),Arrow(HookHead,1mm));
int i,j;
for (i=-7;i<8;++i) {
for (j=-7;j<8;++j) {
if (((-7 <= i) && (i <= -3)) || ((3 <= i) && (i<= 7))) { if (((-7 <= j) && (j <= -3)) || ((3 <= j) && (j<= 7))) { fill(shift(i,j)*p,black); }}}} draw((-7,-.2)--(-7,.2),black+0.5bp);
draw((-3,-.2)--(-3,.2),black+0.5bp);
draw((3,-.2)--(3,.2),black+0.5bp);
draw((7,-.2)--(7,.2),black+0.5bp);
draw((-.2,-7)--(.2,-7),black+0.5bp);
draw((-.2,-3)--(.2,-3),black+0.5bp);
draw((-.2,3)--(.2,3),black+0.5bp);
draw((-.2,7)--(.2,7),black+0.5bp);
label("$-7$",(-7,0),S);
label("$-3$",(-3,0),S);
label("$3$",(3,0),S);
label("$7$",(7,0),S);
label("$-7$",(0,-7),W);
label("$-3$",(0,-3),W);
label("$3$",(0,3),W);
label("$7$",(0,7),W);[/asy]$ \textbf{(A)}\ 125\qquad \textbf{(B)}\ 150\qquad \textbf{(C)}\ 175\qquad \textbf{(D)}\ 200\qquad \textbf{(E)}\ 225$
2025 Sharygin Geometry Olympiad, 11
A point $X$ is the origin of three rays such that the angle between any two of them equals $120^{\circ}$. Let $\omega$ be an arbitrary circle with radius $R$ such that $X$ lies inside it, and $A$, $B$, $C$ be the common points of the rays with this circle. Find $max(XA+XB+XC)$.
Proposed by: F.Nilov
2013 USA TSTST, 7
A country has $n$ cities, labelled $1,2,3,\dots,n$. It wants to build exactly $n-1$ roads between certain pairs of cities so that every city is reachable from every other city via some sequence of roads. However, it is not permitted to put roads between pairs of cities that have labels differing by exactly $1$, and it is also not permitted to put a road between cities $1$ and $n$. Let $T_n$ be the total number of possible ways to build these roads.
(a) For all odd $n$, prove that $T_n$ is divisible by $n$.
(b) For all even $n$, prove that $T_n$ is divisible by $n/2$.
2011 Princeton University Math Competition, A3
Let $PQ$ and $PR$ be tangents to a circle $\omega$ with diameter $AB$ so that $A, Q, R, B$ lie on $\omega$ in that order. Let $H$ be the projection of $P$ onto $AB$ and let $AR$ and $PH$ intersect at $S$. If $\angle QPH = 30^{\circ}$ and $\angle HPR = 20^\circ$, find $\angle ASQ$ in degrees.
Novosibirsk Oral Geo Oly VIII, 2019.6
Point $A$ is located in this circle of radius $1$. An arbitrary chord is drawn through it, and then a circle of radius $2$ is drawn through the ends of this chord. Prove that all such circles touch some fixed circle, not depending from the initial choice of the chord.