Found problems: 25757
2018 239 Open Mathematical Olympiad, 10-11.5
Given a trapezoid $ABCD$, with $AB\parallel CD$. Lines $AC$ and $BD$ intersect at point $E$, and lines $AD$ and $BC$ intersect at point $F$. It turns out that the circle with diameter $EF$ is tangent to the midline of the trapezoid. Prove that there exists a square such that there is a mutual correspondence between all six lines containing pairs of its vertices, and points $A$, $B$, $C$, $D$, $E$, and $F$: each line corresponds to a point lying on it.
[i]Proposed by V. Mokin[/i]
1998 Greece National Olympiad, 2
For a regular $n$-gon, let $M$ be the set of the lengths of the segments joining its vertices. Show that the sum of the squares of the elements of $M$ is greater than twice the area of the polygon.
1989 AMC 12/AHSME, 24
Five people are sitting at a round table. Let $f \ge 0$ be the number of people sitting next to at least one female and $m \ge 0$ be the number of people sitting next to at least one male. The number of possible ordered pairs $(f,m)$ is
$ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11 $
2018 Korea National Olympiad, 1
Let there be an acute triangle $\triangle ABC$ with incenter $I$. $E$ is the foot of the perpendicular from $I$ to $AC$. The line which passes through $A$ and is perpendicular to $BI$ hits line $CI$ at $K$. The line which passes through $A$ and is perpendicular to $CI$ hits the line which passes through $C$ and is perpendicular to $BI$ at $L$. Prove that $E, K, L$ are colinear.
2014 Moldova Team Selection Test, 3
Let $\triangle ABC$ be a triangle with $\angle A$-acute. Let $P$ be a point inside $\triangle ABC$ such that $\angle BAP = \angle ACP$ and $\angle CAP =\angle ABP$. Let $M, N$ be the centers of the incircle of $\triangle ABP$ and $\triangle ACP$, and $R$ the radius of the circumscribed circle of $\triangle AMN$. Prove that $\displaystyle \frac{1}{R}=\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AP}. $
2013 China Second Round Olympiad, 1
$AB$ is a chord of circle $\omega$, $P$ is a point on minor arc $AB$, $E,F$ are on segment $AB$ such that $AE=EF=FB$. $PE,PF$ meets $\omega$ at $C,D$ respectively. Prove that $EF\cdot CD=AC\cdot BD$.
2024 India IMOTC, 5
Let $ABC$ be an acute angled triangle with $AC>AB$ and incircle $\omega$. Let $\omega$ touch the sides $BC, CA,$ and $AB$ at $D, E,$ and $F$ respectively. Let $X$ and $Y$ be points outside $\triangle ABC$ satisfying \[\angle BDX = \angle XEA = \angle YDC = \angle AFY = 45^{\circ}.\]
Prove that the circumcircles of $\triangle AXY, \triangle AEF$ and $\triangle ABC$ meet at a point $Z\ne A$.
[i]Proposed by Atul Shatavart Nadig and Shantanu Nene[/i]
2016 ASMT, 2
Points $D$ and $E$ are chosen on the exterior of $\vartriangle ABC$ such that $\angle ADC = \angle BEC = 90^o$. If $\angle ACB = 40^o$, $AD = 7$, $CD = 24$, $CE = 15$, and $BE = 20$, what is the measure of $\angle ABC $ in,degrees?
1908 Eotvos Mathematical Competition, 2
Let $n$ be an integer greater than $2$. Prove that the $n$th power of the length of the hypotenuse of a right triangle is greater than the sum of the $n$th powers of the lengths of the legs.
2015 BMT Spring, P2
Suppose that fixed circle $C_1$ with radius $a > 0$ is tangent to the fixed line $\ell$ at $A$. Variable circle $C_2$, with center $X$, is externally tangent to $C_1$ at $B \ne A$ and $\ell$ at $C$. Prove that the set of all $X$ is a parabola minus a point
2010 AMC 10, 20
A fly trapped inside a cubical box with side length $ 1$ meter decides to relieve its boredom by visiting each corner of the box. It will begin and end in the same corner and visit each of the other corners exactly once. To get from a corner to any other corner, it will either fly or crawl in a straight line. What is the maximum possible length, in meters, of its path?
$ \textbf{(A)}\ 4 \plus{} 4\sqrt2 \qquad \textbf{(B)}\ 2 \plus{} 4\sqrt2 \plus{} 2\sqrt3 \qquad \textbf{(C)}\ 2 \plus{} 3\sqrt2 \plus{} 3\sqrt3 \qquad \textbf{(D)}\ 4\sqrt2 \plus{} 4\sqrt3 \\ \textbf{(E)}\ 3\sqrt2 \plus{} 5\sqrt3$
2010 Tournament Of Towns, 6
In acute triangle $ABC$, an arbitrary point $P$ is chosen on altitude $AH$. Points $E$ and $F$ are the midpoints of sides $CA$ and $AB$ respectively. The perpendiculars from $E$ to $CP$ and from $F$ to $BP$ meet at point $K$. Prove that $KB = KC$.
2004 Bulgaria National Olympiad, 4
In a word formed with the letters $a,b$ we can change some blocks: $aba$ in $b$ and back, $bba$ in $a$ and backwards. If the initial word is $aaa\ldots ab$ where $a$ appears 2003 times can we reach the word $baaa\ldots a$, where $a$ appears 2003 times.
2000 JBMO ShortLists, 19
Let $ABC$ be a triangle. Find all the triangles $XYZ$ with vertices inside triangle $ABC$ such that $XY,YZ,ZX$ and six non-intersecting segments from the following $AX, AY, AZ, BX, BY, BZ, CX, CY, CZ$ divide the triangle $ABC$ into seven regions with equal areas.
2022 Austrian Junior Regional Competition, 3
A semicircle is erected over the segment $AB$ with center $M$. Let $P$ be one point different from $A$ and $B$ on the semicircle and $Q$ the midpoint of the arc of the circle $AP$. The point of intersection of the straight line $BP$ with the parallel to $P Q$ through $M$ is $S$. Prove that $PM = PS$ holds.
[i](Karl Czakler)[/i]
Kyiv City MO Juniors Round2 2010+ geometry, 2012.8.5
In the triangle $ABC$ on the sides $AB$ and $AC$ outward constructed equilateral triangles $ABD$ and $ACE$. The segments $CD$ and $BE$ intersect at point $F$. It turns out that point $A$ is the center of the circle inscribed in triangle $ DEF$. Find the angle $BAC$.
(Rozhkova Maria)
2014 Kazakhstan National Olympiad, 1
Given a scalene triangle $ABC$. Incircle of $\triangle{ABC{}}$ touches the sides $AB$ and $BC$ at points $C_1$ and $A_1$ respectively, and excircle of $\triangle{ABC}$ (on side $AC$) touches $AB$ and $BC$ at points $ C_2$ and $A_2$ respectively. $BN$ is bisector of $\angle{ABC}$ ($N$ lies on $BC$). Lines $A_1C_1$ and $A_2C_2$ intersects the line $AC$ at points $K_1$ and $K_2$ respectively. Let circumcircles of $\triangle{BK_1N}$ and $\triangle{BK_2N}$ intersect circumcircle of a $\triangle{ABC}$ at points $P_1$ and $P_2$ respectively. Prove that $AP_1$=$CP_2$
2004 Thailand Mathematical Olympiad, 21
The ratio between the circumradius and the inradius of a given triangle is $7 : 2$. If the length of two sides of the triangle are $3$ and $7$, and the length of the remaining side is also an integer, what is the length of the remaining side?
2011 Iran Team Selection Test, 6
The circle $\omega$ with center $O$ has given. From an arbitrary point $T$ outside of $\omega$ draw tangents $TB$ and $TC$ to it. $K$ and $H$ are on $TB$ and $TC$ respectively.
[b]a)[/b] $B'$ and $C'$ are the second intersection point of $OB$ and $OC$ with $\omega$ respectively. $K'$ and $H'$ are on angle bisectors of $\angle BCO$ and $\angle CBO$ respectively such that $KK' \bot BC$ and $HH'\bot BC$. Prove that $K,H',B'$ are collinear if and only if $H,K',C'$ are collinear.
[b]b)[/b] Consider there exist two circle in $TBC$ such that they are tangent two each other at $J$ and both of them are tangent to $\omega$.and one of them is tangent to $TB$ at $K$ and other one is tangent to $TC$ at $H$. Prove that two quadrilateral $BKJI$ and $CHJI$ are cyclic ($I$ is incenter of triangle $OBC$).
1977 IMO Longlists, 17
A ball $K$ of radius $r$ is touched from the outside by mutually equal balls of radius $R$. Two of these balls are tangent to each other. Moreover, for two balls $K_1$ and $K_2$ tangent to $K$ and tangent to each other there exist two other balls tangent to $K_1,K_2$ and also to $K$. How many balls are tangent to $K$? For a given $r$ determine $R$.
1989 USAMO, 4
Let $ABC$ be an acute-angled triangle whose side lengths satisfy the inequalities $AB < AC < BC$. If point $I$ is the center of the inscribed circle of triangle $ABC$ and point $O$ is the center of the circumscribed circle, prove that line $IO$ intersects segments $AB$ and $BC$.
2003 Junior Balkan Team Selection Tests - Romania, 4
Two unit squares with parallel sides overlap by a rectangle of area $1/8$. Find the extreme values of the distance between the centers of the squares.
2005 All-Russian Olympiad Regional Round, 11.6
11.6 Construct for each vertex of the quadrilateral of area $S$ a symmetric point wrt to the diagonal, which doesn't contain this vertex. Let $S'$ be an area of the obtained quadrilateral. Prove that $\frac{S'}{S}<3$.
([i]L. Emel'yanov[/i])
2021 Taiwan TST Round 3, C
There are $2020$ points on the coordinate plane {$A_i = (x_i, y_i):i = 1, ..., 2020$}, satisfying
$$0=x_1<x_2<...<x_{2020}$$
$$0=y_{2020}<y_{2019}<...<y_1$$
Let $O=(0, 0)$ be the origin, $OA_1A_2...A_{2020}$ forms a polygon $C$.
Now, you want to blacken the polygon $C$. Every time you can choose a point $(x,y)$ with $x, y > 0$, and blacken the area {$(x', y'): 0\leq x' \leq x, 0\leq y' \leq y$}. However, you have to pay $xy$ dollars for doing so.
Prove that you could blacken the whole polygon $C$ by using $4|C|$ dollars. Here, $|C|$ stands for the area of the polygon $C$.
[i]Proposed by me[/i]
2023 Francophone Mathematical Olympiad, 3
Let $\Gamma$ and $\Gamma'$ be two circles with centres $O$ and $O'$, such that $O$ belongs to $\Gamma'$. Let $M$ be a point on $\Gamma'$, outside of $\Gamma$. The tangents to $\Gamma$ that go through $M$ touch $\Gamma$ in two points $A$ and $B$, and cross $\Gamma'$ again in two points $C$ and $D$. Finally, let $E$ be the crossing point of the lines $AB$ and $CD$. Prove that the circumcircles of the triangles $CEO'$ and $DEO'$ are tangent to $\Gamma'$.