This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 Brazil National Olympiad, 2

Let $ABC$ be an acute triangle, with $AB<AC$. Let $K$ be the midpoint of the arch $BC$ that does not contain $A$ and let $P$ be the midpoint of $BC$. Let $I_B,I_C$ be the $B$-excenter and $C$-excenter of $ABC$, respectively. Let $Q$ be the reflection of $K$ with respect to $A$. Prove that the points $P,Q,I_B,I_C$ are concyclic.

2010 Saudi Arabia IMO TST, 1

Let $ABC$ be a triangle with $\angle B \ge 2\angle C$. Denote by $D$ the foot of the altitude from $A$ and by $M$ be the midpoint of $BC$. Prove that $DM \ge \frac{AB}{2}$.

2022 Oral Moscow Geometry Olympiad, 1

In a circle with center $O$, chords $AB$ and $AC$ are drawn, both equal to the radius. Points $A_1$, $B_1$ and $C_1$ are projections of points $A, B$ and $C$, respectively, onto an arbitrary diameter $XY$. Prove that one of the segments $XB_1$, $OA_1$ and $C_1Y$ is equal to the sum of the other two. (A. Shklover)

1993 India Regional Mathematical Olympiad, 4

Let $ABCD$ be a rectangle with $AB = a$ and $BC = b$. Suppose $r_1$ is the radius of the circle passing through $A$ and $B$ touching $CD$; and similarly $r_2$ is the radius of the circle passing through $B$ and $C$ and touching $AD$. Show that \[ r_1 + r_2 \geq \frac{5}{8} ( a + b) . \]

2008 Harvard-MIT Mathematics Tournament, 2

Tags: ratio , geometry , inradius
Let $ ABC$ be an equilateral triangle. Let $ \Omega$ be its incircle (circle inscribed in the triangle) and let $ \omega$ be a circle tangent externally to $ \Omega$ as well as to sides $ AB$ and $ AC$. Determine the ratio of the radius of $ \Omega$ to the radius of $ \omega$.

Estonia Open Junior - geometry, 2017.1.5

Find all possibilities: how many acute angles can there be in a convex polygon?

1960 AMC 12/AHSME, 21

The diagonal of square I is $a+b$. The perimeter of square II with [i]twice[/i] the area of I is: $ \textbf{(A)}\ (a+b)^2\qquad\textbf{(B)}\ \sqrt{2}(a+b)^2\qquad\textbf{(C)}\ 2(a+b)\qquad\textbf{(D)}\ \sqrt{8}(a+b) \qquad$ $\textbf{(E)}\ 4(a+b) $

2023 ELMO Shortlist, G4

Tags: geometry
Let \(D\) be a point on segment \(PQ\). Let \(\omega\) be a fixed circle passing through \(D\), and let \(A\) be a variable point on \(\omega\). Let \(X\) be the intersection of the tangent to the circumcircle of \(\triangle ADP\) at \(P\) and the tangent to the circumcircle of \(\triangle ADQ\) at \(Q\). Show that as \(A\) varies, \(X\) lies on a fixed line. [i]Proposed by Elliott Liu and Anthony Wang[/i]

2004 USAMTS Problems, 2

For the equation \[ (3x^2+y^2-4y-17)^3-(2x^2+2y^2-4y-6)^3=(x^2-y^2-11)^3, \] determine its solutions $(x, y)$ where both $x$ and $y$ are integers. Prove that your answer lists all the integer solutions.

2004 Olympic Revenge, 1

$ABC$ is a triangle and $D$ is an internal point such that $\angle DAB=\angle DBC =\angle DCA$. $O_a$ is the circumcenter of $DBC$. $O_b$ is the circumcenter of $DAC$. $O_c$ is the circumcenter of $DAB$. Show that if the area of $ABC$ and $O_aO_bO_c$ are equal then $ABC$ is equilateral.

1986 IMO Longlists, 14

Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.

2008 USAPhO, 2

A uniform pool ball of radius $r$ and mass $m$ begins at rest on a pool table. The ball is given a horizontal impulse $J$ of fixed magnitude at a distance $\beta r$ above its center, where $-1 \le \beta \le 1$. The coefficient of kinetic friction between the ball and the pool table is $\mu$. You may assume the ball and the table are perfectly rigid. Ignore effects due to deformation. (The moment of inertia about the center of mass of a solid sphere of mass $m$ and radius $r$ is $I_{cm} = \frac{2}{5}mr^2$.) [asy] size(250); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); filldraw(circle((0,0),1),gray(.8)); draw((-3,-1)--(3,-1)); draw((-2.4,0.1)--(-2.4,0.6),EndArrow); draw((-2.5,0)--(2.5,0),dashed); draw((-2.75,0.7)--(-0.8,0.7),EndArrow); label("$J$",(-2.8,0.7),W); label("$\beta r$",(-2.3,0.35),E); draw((0,-1.5)--(0,1.5),dashed); draw((1.7,-0.1)--(1.7,-0.9),BeginArrow,EndArrow); label("$r$",(1.75,-0.5),E); [/asy] (a) Find an expression for the final speed of the ball as a function of $J$, $m$, and $\beta$. (b) For what value of $\beta$ does the ball immediately begin to roll without slipping, regardless of the value of $\mu$?

2020 Taiwan TST Round 2, 1

Tags: geometry
Let $ABC$ be a triangle. Circle $\Gamma$ passes through $A$, meets segments $AB$ and $AC$ again at points $D$ and $E$ respectively, and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $BDF$ at $F$ and the tangent to circle $CEG$ at $G$ meet at point $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$. (Nigeria)

2015 Indonesia MO Shortlist, G5

Let $ABC$ be an acute triangle. Suppose that circle $\Gamma_1$ has it's center on the side $AC$ and is tangent to the sides $AB$ and $BC$, and circle $\Gamma_2$ has it's center on the side $AB$ and is tangent to the sides $AC$ and $BC$. The circles $\Gamma_1$ and $ \Gamma_2$ intersect at two points $P$ and $Q$. Show that if $A, P, Q$ are collinear, then $AB = AC$.

2000 Moldova National Olympiad, Problem 3

Tags: geometry , triangle
The excircle of a triangle $ABC$ corresponding to $A$ touches the side $BC$ at $M$, and the point on the incircle diametrically opposite to its point of tangency with $BC$ is denoted by $N$. Prove that $A,M,$ and $N$ are collinear.

LMT Team Rounds 2010-20, 2018 Spring

[b]p1[/b]. Points $P_1,P_2,P_3,... ,P_n$ lie on a plane such that $P_aP_b = 1$,$P_cP_d = 2$, and $P_eP_f = 2018$ for not necessarily distinct indices $a,b,c,d,e, f \in \{1, 2,... ,n\}$. Find the minimum possible value of $n$. [b]p2.[/b] Find the coefficient of the $x^2y^4$ term in the expansion of $(3x +2y)^6$. [b]p3.[/b] Find the number of positive integers $n < 1000$ such that $n$ is a multiple of $27$ and the digit sum of $n$ is a multiple of $11$. [b]p4.[/b] How many times do the minute hand and hour hand of a $ 12$-hour analog clock overlap in a $366$-day leap year? [b]p5.[/b] Find the number of ordered triples of integers $(a,b,c)$ such that $(a +b)(b +c)(c + a) = 2018$. [b]p6.[/b] Let $S$ denote the set of the first $2018$ positive integers. Call the score of a subset the sum of its maximal element and its minimal element. Find the sum of score $(x)$ over all subsets $s \in S$ [b]p7.[/b] How many ordered pairs of integers $(a,b)$ exist such that $1 \le a,b \le 20$ and $a^a$ divides $b^b$? [b]p8.[/b] Let $f$ be a function such that for every non-negative integer $p$, $f (p)$ equals the number of ordered pairs of positive integers $(a,n)$ such that $a^n = a^p \cdot n$. Find $\sum^{2018}_{p=0}f (p)$. [b]p9.[/b] A point $P$ is randomly chosen inside a regular octagon $A_1A_2A_3A_4A_5A_6A_7A_8$. What is the probability that the projections of $P$ onto the lines $\overleftrightarrow{A_i A_{i+1}}$ for $i = 1,2,... ,8$ lie on the segments $\overline{A_iA_{i+1}}$ for $i = 1,2,... ,8$ (where indices are taken $mod \,\, 8$)? [b]p10. [/b]A person keeps flipping an unfair coin until it flips $3$ tails in a row. The probability of it landing on heads is $\frac23$ and the probability it lands on tails is $\frac13$ . What is the expected value of the number of the times the coin flips? PS. You had better use hide for answers.

2011 All-Russian Olympiad Regional Round, 9.6

Initially, there are three different points on the plane. Every minute, three points are chosen, for example $A$, $B$ and $C$, and a new point $D$ is generated which is symmetric to $A$ with respect to the perpendicular bisector of line segment $BC$. 24 hours later, it turns out that among all the points that were generated, there exist three collinear points. Prove that the three initial points were also collinear. (Author: V. Shmarov)

1948 Putnam, A2

Two spheres in contact have a common tangent cone. These three surfaces divide the space into various parts, only one of which is bounded by all three surfaces, it is "ring-shaped." Being given the radii of the spheres, $r$ and $R$, find the volume of the "ring-shaped" part. (The desired expression is a rational function of $r$ and $R.$)

2010 Sharygin Geometry Olympiad, 3

All sides of a convex polygon were decreased in such a way that they formed a new convex polygon. Is it possible that all diagonals were increased?

2016 Germany National Olympiad (4th Round), 3

Let $I_a$ be the $A$-excenter of a scalene triangle $ABC$. And let $M$ be the point symmetric to $I_a$ about line $BC$. Prove that line $AM$ is parallel to the line through the circumcenter and the orthocenter of triangle $I_aCB$.

2009 Switzerland - Final Round, 7

Points $A, M_1, M_2$ and $C$ are on a line in this order. Let $k_1$ the circle with center $M_1$ passing through $A$ and $k_2$ the circle with center $M_2$ passing through $C$. The two circles intersect at points $E$ and $F$. A common tangent of $k_1$ and $k_2$, touches $k_1$ at $B$ and $k_2$ at $D$. Show that the lines $AB, CD$ and $EF$ intersect at one point.

VMEO IV 2015, 11.2

Let $ABC$ be a triangle with two isogonal points $ P$ and $Q$ . Let $D, E$ be the projection of $P$ on $AB$, $AC$. $G$ is the projection of $Q$ on $BC$. $U$ is the projection of $G$ on $DE$, $ L$ is the projection of $P$ on $AQ$, $K$ is the symmetric of $L$ wrt $UG$. Prove that $UK$ passes through a fixed point when $P$ and $Q$ vary.

1989 IMO Longlists, 14

For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality \[ 16Q^3 \geq 27 r^4 P,\] where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and $ABC$ respectively.

2008 Teodor Topan, 3

Consider the sequence $ a_n\equal{}\sqrt[3]{n^3\plus{}3n^2\plus{}2n\plus{}1}\plus{}a\sqrt[5]{n^5\plus{}5n^4\plus{}1}\plus{}\frac{ln(e^{n^2}\plus{}n\plus{}2)}{n\plus{}2}\plus{}b$. Find $ a,b \in \mathbb{R}$ such that $ \displaystyle\lim_{n\to\infty}a_n\equal{}5$.

2008 JBMO Shortlist, 2

Tags: geometry
For a fixed triangle $ABC$ we choose a point $M$ on the ray $CA$ (after $A$), a point $N$ on the ray $AB$ (after $B$) and a point $P$ on the ray $BC$ (after $C$) in a way such that $AM -BC = BN- AC = CP – AB$. Prove that the angles of triangle $MNP$ do not depend on the choice of $M, N, P$ .