This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 Czech-Polish-Slovak Junior Match, 3

Tags: pentagon , geometry
Given is a convex pentagon $ABCDE$ in which $\angle A = 60^o$, $\angle B = 100^o$, $\angle C = 140^o$. Show that this pentagon can be placed in a circle with a radius of $\frac23 AD$.

2023 Hong Kong Team Selection Test, Problem 2

Giiven $\Delta ABC$, $\angle CAB=75^{\circ}$ and $\angle ACB=45^{\circ}$. $BC$ is extended to $T$ so that $BC=CT$. Let $M$ be the midpoint of the segment $AT$. Find $\angle BMC$.

2000 Korea Junior Math Olympiad, 7

$ABC$ is a triangle that $2\angle B < \angle A <90^{\circ}$, and $P$ is a point on $AB$ satisfying $\angle A=2\angle APC$. If $BC=a$, $AC=b$, $BP=1$, express $AP$ as a function of $a, b$.

1984 IMO Longlists, 65

A tetrahedron is inscribed in a sphere of radius $1$ such that the center of the sphere is inside the tetrahedron. Prove that the sum of lengths of all edges of the tetrahedron is greater than 6.

1993 Tournament Of Towns, (384) 2

Tags: geometry , area
The square $ PQRS$ is placed inside the square $ABCD$ in such a way that the segments $AP$, $BQ$, $CR$ and $DS$ intersect neither each other nor the square $PQRS$. Prove that the sum of areas of quadrilaterals $ABQP$ and $CDSR$ is equal to the sum of the areas of quadrilaterals $BCRQ$ and $DAPS$. (Folklore)

2009 IMO, 2

Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$ [i]Proposed by Sergei Berlov, Russia [/i]

2005 Federal Math Competition of S&M, Problem 3

Tags: triangle , geometry
In a triangle $ABC$, $D$ is the orthogonal projection of the incenter $I$ onto $BC$. Line $DI$ meets the incircle again at $E$. Line $AE$ intersects side $BC$ at point $F$. Suppose that the segment IO is parallel to $BC$, where $O$ is the circumcenter of $\triangle ABC$. If $R$ is the circumradius and $r$ the inradius of the triangle, prove that $EF=2(R-2r)$.

2005 Greece Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2018-2019 SDML (High School), 8

Tags: geometry , rhombus
The figure below consists of five isosceles triangles and ten rhombi. The bases of the isosceles triangles are $12$, $13$, $14$, $15$, as shown below. The top rhombus, which is shaded, is actually a square. Find the area of this square. [DIAGRAM NEEDED]

2010 Kyiv Mathematical Festival, 3

Let $O$ be the circumcenter and $I$ be the incenter of triangle $ABC.$ Prove that if $AI\perp OB$ and $BI\perp OC$ then $CI\parallel OA$.

2013 Purple Comet Problems, 17

A rectangle has side lengths $6$ and $8$. There are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that a point randomly selected from the inside of the rectangle is closer to a side of the rectangle than to either diagonal of the rectangle. Find $m + n$.

2015 Sharygin Geometry Olympiad, P3

The side $AD$ of a square $ABCD$ is the base of an obtuse-angled isosceles triangle $AED$ with vertex $E$ lying inside the square. Let $AF$ be a diameter of the circumcircle of this triangle, and $G$ be a point on $CD$ such that $CG = DF$. Prove that angle $BGE$ is less than half of angle $AED$.

1966 IMO Longlists, 57

Is it possible to choose a set of $100$ (or $200$) points on the boundary of a cube such that this set is fixed under each isometry of the cube into itself? Justify your answer.

1990 Tournament Of Towns, (270) 4

The sides $AB$, $BC$, $CD$ and $DA$ of the quadrilateral $ABCD$ are respectively equal to the sides $A'B'$, $B'C'$, $C'D' $ and $D'A'$ of the quadrilateral $A'B'CD$' and it is known that $AB \parallel CD$ and $B'C' \parallel D'A'$. Prove that both quadrilaterals are parallelograms. (V Proizvolov, Moscow)

2016 Thailand TSTST, 2

Let $\omega$ be a circle touching two parallel lines $\ell_1, \ell_2$, $\omega_1$ a circle touching $\ell_1$ at $A$ and $\omega$ externally at $C$, and $\omega_2$ a circle touching $\ell_2$ at $B$, $\omega$ externally at $D$, and $\omega_1$ externally at $E$. Prove that $AD, BC$ intersect at the circumcenter of $\vartriangle CDE$.

2004 Croatia Team Selection Test, 3

A line intersects a semicircle with diameter $AB$ and center $O$ at $C$ and $D$, and the line $AB$ at $M$, where $MB < MA$ and $MD < MC.$ If the circumcircles of the triangles $AOC$ and $DOB$ meet again at $K,$ prove that $\angle MKO$ is right.

1999 Tournament Of Towns, 1

A convex polyhedron is floating in a sea. Can it happen that $90\%$ of its volume is below the water level, while more than half of its surface area is above the water level? (A Shapovalov)

2015 Kyoto University Entry Examination, 1

Tags: geometry
1. The Line $y=px+q$ intersects $y=x^2-x$, but not intersect $y=|x|+|x-1|+1$, then illustlate range of $(p,q)$ and find the area.

2016 BMT Spring, 17

Consider triangle $ABC$ in $xy$-plane where $ A$ is at the origin, $ B$ lies on the positive $x$-axis, $C$ is on the upper right quadrant, and $\angle A = 30^o$, $\angle B = 60^o$ ,$\angle C = 90^o$. Let the length $BC = 1$. Draw the angle bisector of angle $\angle C$, and let this intersect the $y$-axis at $D$. What is the area of quadrilateral $ADBC$?

2005 Tournament of Towns, 5

Prove that if a regular icosahedron and a regular dodecahedron have a common circumsphere, then they have a common insphere. [i](7 points)[/i]

2011 Mexico National Olympiad, 5

A $(2^n - 1) \times (2^n +1)$ board is to be divided into rectangles with sides parallel to the sides of the board and integer side lengths such that the area of each rectangle is a power of 2. Find the minimum number of rectangles that the board may be divided into.

2005 All-Russian Olympiad Regional Round, 10.1

The cosines of the angles of one triangle are respectively equal to the sines of the angles of the other triangle. Find the largest of these six angles of triangles.

2001 Stanford Mathematics Tournament, 9

What is the minimum number of straight cuts needed to cut a cake in 100 pieces? The pieces do not need to be the same size or shape but cannot be rearranged between cuts. You may assume that the cake is a large cube and may be cut from any direction.

2008 Romania National Olympiad, 4

Let $ ABCD$ be a rectangle with center $ O$, $ AB\neq BC$. The perpendicular from $ O$ to $ BD$ cuts the lines $ AB$ and $ BC$ in $ E$ and $ F$ respectively. Let $ M,N$ be the midpoints of the segments $ CD,AD$ respectively. Prove that $ FM \perp EN$.

2015 Junior Regional Olympiad - FBH, 1

Tags: geometry , angle
Find two angles which add to $180^{\circ}$ which difference is $1^{'}$