Found problems: 25757
2005 Baltic Way, 9
A rectangle is divided into $200\times 3$ unit squares. Prove that the number of ways of splitting this rectangle into rectangles of size $1\times 2$ is divisible by $3$.
2014 PUMaC Geometry B, 8
$ABCD$ is a cyclic quadrilateral with circumcenter $O$ and circumradius $7$. $AB$ intersects $CD$ at $E$, $DA$ intersects $CB$ at $F$. $OE=13$, $OF=14$. Let $\cos\angle FOE=\dfrac pq$, with $p$, $q$ coprime. Find $p+q$.
LMT Team Rounds 2010-20, 2019 Spring
[b]p1.[/b] David runs at $3$ times the speed of Alice. If Alice runs $2$ miles in $30$ minutes, determine how many minutes it takes for David to run a mile.
[b]p2.[/b] Al has $2019$ red jelly beans. Bob has $2018$ green jelly beans. Carl has $x$ blue jelly beans. The minimum number of jelly beans that must be drawn in order to guarantee $2$ jelly beans of each color is $4041$. Compute $x$.
[b]p3.[/b] Find the $7$-digit palindrome which is divisible by $7$ and whose first three digits are all $2$.
[b]p4.[/b] Determine the number of ways to put $5$ indistinguishable balls in $6$ distinguishable boxes.
[b]p5.[/b] A certain reduced fraction $\frac{a}{b}$ (with $a,b > 1$) has the property that when $2$ is subtracted from the numerator and added to the denominator, the resulting fraction has $\frac16$ of its original value. Find this fraction.
[b]p6.[/b] Find the smallest positive integer $n$ such that $|\tau(n +1)-\tau(n)| = 7$. Here, $\tau(n)$ denotes the number of divisors of $n$.
[b]p7.[/b] Let $\vartriangle ABC$ be the triangle such that $AB = 3$, $AC = 6$ and $\angle BAC = 120^o$. Let $D$ be the point on $BC$ such that $AD$ bisect $\angle BAC$. Compute the length of $AD$.
[b]p8.[/b] $26$ points are evenly spaced around a circle and are labeled $A$ through $Z$ in alphabetical order. Triangle $\vartriangle LMT$ is drawn. Three more points, each distinct from $L, M$, and $T$ , are chosen to form a second triangle. Compute the probability that the two triangles do not overlap.
[b]p9.[/b] Given the three equations
$a +b +c = 0$
$a^2 +b^2 +c^2 = 2$
$a^3 +b^3 +c^3 = 19$
find $abc$.
[b]p10.[/b] Circle $\omega$ is inscribed in convex quadrilateral $ABCD$ and tangent to $AB$ and $CD$ at $P$ and $Q$, respectively. Given that $AP = 175$, $BP = 147$,$CQ = 75$, and $AB \parallel CD$, find the length of $DQ$.
[b]p11. [/b]Let $p$ be a prime and m be a positive integer such that $157p = m^4 +2m^3 +m^2 +3$. Find the ordered pair $(p,m)$.
[b]p12.[/b] Find the number of possible functions $f : \{-2,-1, 0, 1, 2\} \to \{-2,-1, 0, 1, 2\}$ that satisfy the following conditions.
(1) $f (x) \ne f (y)$ when $x \ne y$
(2) There exists some $x$ such that $f (x)^2 = x^2$
[b]p13.[/b] Let $p$ be a prime number such that there exists positive integer $n$ such that $41pn -42p^2 = n^3$. Find the sum of all possible values of $p$.
[b]p14.[/b] An equilateral triangle with side length $ 1$ is rotated $60$ degrees around its center. Compute the area of the region swept out by the interior of the triangle.
[b]p15.[/b] Let $\sigma (n)$ denote the number of positive integer divisors of $n$. Find the sum of all $n$ that satisfy the equation $\sigma (n) =\frac{n}{3}$.
[b]p16[/b]. Let $C$ be the set of points $\{a,b,c\} \in Z$ for $0 \le a,b,c \le 10$. Alice starts at $(0,0,0)$. Every second she randomly moves to one of the other points in $C$ that is on one of the lines parallel to the $x, y$, and $z$ axes through the point she is currently at, each point with equal probability. Determine the expected number of seconds it will take her to reach $(10,10,10)$.
[b]p17.[/b] Find the maximum possible value of $$abc \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3$$ where $a,b,c$ are real such that $a +b +c = 0$.
[b]p18.[/b] Circle $\omega$ with radius $6$ is inscribed within quadrilateral $ABCD$. $\omega$ is tangent to $AB$, $BC$, $CD$, and $DA$ at $E, F, G$, and $H$ respectively. If $AE = 3$, $BF = 4$ and $CG = 5$, find the length of $DH$.
[b]p19.[/b] Find the maximum integer $p$ less than $1000$ for which there exists a positive integer $q$ such that the cubic equation $$x^3 - px^2 + q x -(p^2 -4q +4) = 0$$ has three roots which are all positive integers.
[b]p20.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle ABC = 60^o$,$\angle ACB = 20^o$. Let $P$ be the point such that $CP$ bisects $\angle ACB$ and $\angle PAC = 30^o$. Find $\angle PBC$.
PS. You had better use hide for answers.
2019 USA IMO Team Selection Test, 6
Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on line $BC$ satisfying $\angle AID=90^{\circ}$. Let the excircle of triangle $ABC$ opposite the vertex $A$ be tangent to $\overline{BC}$ at $A_1$. Define points $B_1$ on $\overline{CA}$ and $C_1$ on $\overline{AB}$ analogously, using the excircles opposite $B$ and $C$, respectively.
Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then $\overline{AD}$ is tangent to the circumcircle of $\triangle DB_1C_1$.
[i]Ankan Bhattacharya[/i]
2020 CMIMC Geometry, 5
For every positive integer $k$, let $\mathbf{T}_k = (k(k+1), 0)$, and define $\mathcal{H}_k$ as the homothety centered at $\mathbf{T}_k$ with ratio $\tfrac{1}{2}$ if $k$ is odd and $\tfrac{2}{3}$ is $k$ is even. Suppose $P = (x,y)$ is a point such that
$$(\mathcal{H}_{4} \circ \mathcal{H}_{3} \circ \mathcal{H}_2 \circ \mathcal{H}_1)(P) = (20, 20).$$ What is $x+y$?
(A [i]homothety[/i] $\mathcal{H}$ with nonzero ratio $r$ centered at a point $P$ maps each point $X$ to the point $Y$ on ray $\overrightarrow{PX}$ such that $PY = rPX$.)
1996 Singapore Senior Math Olympiad, 2
Let $180^o < \theta_1 < \theta_2 <...< \theta_n = 360^o$. For $i = 1,2,..., n$, $P_i = (\cos \theta_i^o, \sin \theta_i^o)$ is a point on the circle $C$ with centre $(0,0)$ and radius $1$. Let $P$ be any point on the upper half of $C$. Find the coordinates of $P$ such that the sum of areas $[PP_1P_2] + [PP_2P_3] + ...+ [PP_{n-1}P_n]$ attains its maximum.
2009 Moldova Team Selection Test, 2
$ f(x)$ and $ g(x)$ are two polynomials with nonzero degrees and integer coefficients, such that $ g(x)$ is a divisor of $ f(x)$ and the polynomial $ f(x)\plus{}2009$ has $ 50$ integer roots. Prove that the degree of $ g(x)$ is at least $ 5$.
2015 Junior Regional Olympiad - FBH, 3
Let $D$ be a midpoint of $BC$ of triangle $ABC$. On side $AB$ is given point $E$, and on side $AC$ is given point $F$ such that $\angle EDF = 90^{\circ}$. Prove that $BE+CF>EF$
1962 Miklós Schweitzer, 10
From a given triangle of unit area, we choose two points independetly with uniform distribution. The straight line connecting these points divides the triangle. with probability one, into a triangle and a quadrilateral. Calculate the expected values of the areas of these two regions. [A. Renyi]
2022 Israel TST, 2
Define a [b]ring[/b] in the plane to be the set of points at a distance of at least $r$ and at most $R$ from a specific point $O$, where $r<R$ are positive real numbers. Rings are determined by the three parameters $(O, R, r)$. The area of a ring is labeled $S$. A point in the plane for which both its coordinates are integers is called an integer point.
[b]a)[/b] For each positive integer $n$, show that there exists a ring not containing any integer point, for which $S>3n$ and $R<2^{2^n}$.
[b]b)[/b] Show that each ring satisfying $100\cdot R<S^2$ contains an integer point.
2000 Harvard-MIT Mathematics Tournament, 7
A number $n$ is called multiplicatively perfect if the product of all the positive divisors of $n$ is $n^2$. Determine the number of positive multiplicatively perfect numbers less than $100$.
2020 Yasinsky Geometry Olympiad, 1
Given an acute triangle $ABC$. A circle inscribed in a triangle $ABC$ with center at point $I$ touches the sides $AB, BC$ at points $C_1$ and $A_1$, respectively. The lines $A_1C_1$ and $AC$ intersect at the point $Q$. Prove that the circles circumscribed around the triangles $AIC$ and $A_1CQ$ are tangent.
(Dmitry Shvetsov)
1993 All-Russian Olympiad Regional Round, 9.3
Points $M$ and $N$ are chosen on the sides $AB$ and BC of a triangle $ABC$. The segments $AN$ and $CM$ meet at $O$ such that $AO =CO$. Is the triangle $ABC$ necessarily isosceles, if
(a) $AM = CN$?
(b) $BM = BN$?
2010 Turkey Team Selection Test, 1
$D, \: E , \: F$ are points on the sides $AB, \: BC, \: CA,$ respectively, of a triangle $ABC$ such that $AD=AF, \: BD=BE,$ and $DE=DF.$ Let $I$ be the incenter of the triangle $ABC,$ and let $K$ be the point of intersection of the line $BI$ and the tangent line through $A$ to the circumcircle of the triangle $ABI.$ Show that $AK=EK$ if $AK=AD.$
2010 Stanford Mathematics Tournament, 4
Given triangle $ABC$. $D$ lies on $BC$ such that $AD$ bisects $BAC$. Given $AB=3$, $AC=9$, and
$BC=8$. Find $AD$.
2008 Oral Moscow Geometry Olympiad, 2
In a certain triangle, the bisectors of the two interior angles were extended to the intersection with the circumscribed circle and two equal chords were obtained. Is it true that the triangle is isosceles?
2014 ELMO Shortlist, 1
Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.
[i]Proposed by Sammy Luo[/i]
II Soros Olympiad 1995 - 96 (Russia), 9.6
There is a point inside a regular triangle located at distances $5$, $6$ and $7$ from its vertices. Find the area of this regular triangle.
2019 Mid-Michigan MO, 7-9
[b]p1.[/b] Prove that the equation $x^6 - 143x^5 - 917x^4 + 51x^3 + 77x^2 + 291x + 1575 = 0$ has no integer solutions.
[b]p2.[/b] There are $81$ wheels in a storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that it can be detected with certainty after four measurements on a balance scale.
[b]p3.[/b] Rob and Ann multiplied the numbers from $1$ to $100$ and calculated the sum of digits of this product. For this sum, Rob calculated the sum of its digits as well. Then Ann kept repeating this operation until he got a one-digit number. What was this number?
[b]p4.[/b] Rui and Jui take turns placing bishops on the squares of the $ 8\times 8$ chessboard in such a way that bishops cannot attack one another. (In this game, the color of the rooks is irrelevant.) The player who cannot place a rook loses the game. Rui takes the first turn. Who has a winning strategy, and what is it?
[b]p5.[/b] The following figure can be cut along sides of small squares into several (more than one) identical shapes. What is the smallest number of such identical shapes you can get?
[img]https://cdn.artofproblemsolving.com/attachments/8/e/9cd09a04209774dab34bc7f989b79573453f35.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1955 Polish MO Finals, 5
In the plane, a straight line $ m $ is given and points $ A $ and $ B $ lie on opposite sides of the straight line $ m $. Find a point $ M $ on the line $ m $ such that the difference in distances of this point from points $ A $ and $ B $ is as large as possible.
2001 Korea - Final Round, 2
Let $P$ be a given point inside a convex quadrilateral $O_1O_2O_3O_4$. For each $i = 1,2,3,4$, consider the lines $l$ that pass through $P$ and meet the rays $O_iO_{i-1}$ and $O_iO_{i+1}$ (where $O_0 = O_4$ and $O_5 = O_1$) at distinct points $A_i(l)$ and $B_i(l)$, respectively. Denote $f_i(l) = PA_i(l) \cdot PB_i(l)$. Among all such lines $l$, let $l_i$ be the one that minimizes $f_i$. Show that if $l_1 = l_3$ and $l_2 = l_4$, then the quadrilateral $O_1O_2O_3O_4$ is a parallelogram.
2023 Romania EGMO TST, P3
Let $D{}$ be a point inside the triangle $ABC$. Let $E{}$ and $F{}$ be the projections of $D{}$ onto $AB$ and $AC$, respectively. The lines $BD$ and $CD$ intersect the circumcircle of $ABC$ the second time at $M{}$ and $N{}$, respectively. Prove that \[\frac{EF}{MN}\geqslant \frac{r}{R},\]where $r{}$ and $R{}$ are the inradius and circumradius of $ABC$, respectively.
DMM Team Rounds, 2002
[b]p1.[/b] What is the last digit of
$$1! + 2! + ... + 10!$$
where $n!$ is defined to equal $1 \cdot 2 \cdot ... \cdot n$?
[b]p2.[/b] What pair of positive real numbers, $(x, y)$, satisfies
$$x^2y^2 = 144$$
$$(x - y)^3 = 64?$$
[b]p3.[/b] Paul rolls a standard $6$-sided die, and records the results. What is the probability that he rolls a $1$ ten times before he rolls a $6$ twice?
[b]p4.[/b] A train is approaching a $1$ kilometer long tunnel at a constant $40$ km/hr. It so happens that if Roger, who is inside, runs towards either end of the tunnel at a contant $10$ km/hr, he will reach that end at the exact same time as the train. How far from the center of the tunnel is Roger?
[b]p5.[/b] Let $ABC$ be a triangle with $A$ being a right angle. Let $w$ be a circle tangent to $\overline{AB}$ at $A$ and tangent to $\overline{BC}$ at some point $D$. Suppose $w$ intersects $\overline{AC}$ again at $E$ and that $\overline{CE} = 3$, $\overline{CD} = 6$. Compute $\overline{BD}$.
[b]p6.[/b] In how many ways can $1000$ be written as a sum of consecutive integers?
[b]p7.[/b] Let $ABC$ be an isosceles triangle with $\overline{AB} = \overline{AC} = 10$ and $\overline{BC} = 6$. Let $M$ be the midpoint of $\overline{AB}$, and let $\ell$ be the line through $A$ parallel to $\overline{BC}$. If $\ell$ intersects the circle through $A$, $C$ and $M$ at $D$, then what is the length of $\overline{AD}$?
[b]p8.[/b] How many ordered triples of pairwise relatively prime, positive integers, $\{a, b, c\}$, have the property that $a + b$ is a multiple of $c$, $b + c$ is a multiple of $a$, and $a + c$ is a multiple of $b$?
[b]p9.[/b] Consider a hexagon inscribed in a circle of radius $r$. If the hexagon has two sides of length $2$, two sides of length $7$, and two sides of length $11$, what is $r$?
[b]p10.[/b] Evaluate
$$\sum^{\infty}_{i=0} \sum^{\infty}_{j=0} \frac{\left( (-1)^i + (-1)^j\right) \cos (i) \sin (j)}{i!j!} ,$$
where angles are measured in degrees, and $0!$ is defined to equal $1$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1997 IMO Shortlist, 23
Let $ ABCD$ be a convex quadrilateral. The diagonals $ AC$ and $ BD$ intersect at $ K$. Show that $ ABCD$ is cyclic if and only if $ AK \sin A \plus{} CK \sin C \equal{} BK \sin B \plus{} DK \sin D$.
2014 Serbia National Math Olympiad, 2
On sides $BC$ and $AC$ of $\triangle ABC$ given are $D$ and $E$, respectively. Let $F$ ($F \neq C$) be a point of intersection of circumcircle of $\triangle CED$ and line that is parallel to $AB$ and passing through C. Let $G$ be a point of intersection of line $FD$ and side $AB$, and let $H$ be on line $AB$ such that $\angle HDA = \angle GEB$ and $H-A-B$. If $DG=EH$, prove that point of intersection of $AD$ and $BE$ lie on angle bisector of $\angle ACB$.
[i]Proposed by Milos Milosavljevic[/i]