This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2012 Lusophon Mathematical Olympiad, 1

Arnaldo and Bernaldo train for a marathon along a circular track, which has in its center a mast with a flag raised. Arnaldo runs faster than Bernaldo, so that every $30$ minutes of running, while Arnaldo gives $15$ laps on the track, Bernaldo can only give $10$ complete laps. Arnaldo and Bernaldo left at the same moment of the line and ran with constant velocities, both in the same direction. Between minute $1$ and minute $61$ of the race, how many times did Arnaldo, Bernaldo and the mast become collinear?

2003 Gheorghe Vranceanu, 4

Let $ I $ be the incentre of $ ABC $ and $ D,E,F $ be the feet of the perpendiculars from $ I $ to $ BC,CA,AB, $ respectively. Show that $$ \frac{AB}{DE} +\frac{BC}{EF} +\frac{CA}{FD}\ge 6. $$

2021 Mediterranean Mathematics Olympiad, 3

Let $ABC$ be an equiangular triangle with circumcircle $\omega$. Let point $F\in AB$ and point $E\in AC$ so that $\angle ABE+\angle ACF=60^{\circ}$. The circumcircle of triangle $AFE$ intersects the circle $\omega$ in the point $D$. The halflines $DE$ and $DF$ intersect the line through $B$ and $C$ in the points $X$ and $Y$. Prove that the incenter of the triangle $DXY$ is independent of the choice of $E$ and $F$. (The angles in the problem statement are not directed. It is assumed that $E$ and $F$ are chosen in such a way that the halflines $DE$ and $DF$ indeed intersect the line through $B$ and $C$.)

2023 Sharygin Geometry Olympiad, 4

Tags: geometry , incenter
Points $D$ and $E$ lie on the lateral sides $AB$ and $BC$ respectively of an isosceles triangle $ABC$ in such a way that $\angle BED = 3\angle BDE$. Let $D'$ be the reflection of $D$ about $AC$. Prove that the line $D'E$ passes through the incenter of $ABC$.

Revenge EL(S)MO 2024, 7

A scalene triangle $ABC$ was drawn, and Elmo marked its incenter $I$, Feuerbach point $X$, and Nagel point $N$. Sadly, after taking the abcdEfghijkLMnOpqrstuvwxyz, Elmo lost the triangle $ABC$. Can Elmo use only a ruler and compass to reconstruct the triangle? Proposed by [i]Karn Chutinan[/i]

2005 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and let $D$, $E$, $F$ be 3 points on the sides $BC$, $CA$ and $AB$ respectively, such that the inradii of the triangles $AEF$, $BDF$ and $CDE$ are equal with half of the inradius of the triangle $ABC$. Prove that $D$, $E$, $F$ are the midpoints of the sides of the triangle $ABC$.

Geometry Mathley 2011-12, 16.4

A triangle $ABC$ is inscribed in the circle $(O)$, and has incircle $(I)$. The circles with diameter $IA$ meets $(O)$ at $A_1$ distinct from $A$. Points $B_1,C_1$ are defined in the same manner. Line $B_1C_1$ meets $BC$ at $A_2$, and points $B_2,C_2$ are defined in the same manner. Prove that $O$ is the orthocenter of triangle $A_2B_2C_2$. Trần Minh Ngọc

2018 Hong Kong TST, 4

In triangle $ABC$ with incentre $I$, let $M_A,M_B$ and $M_C$ by the midpoints of $BC, CA$ and $AB$ respectively, and $H_A,H_B$ and $H_C$ be the feet of the altitudes from $A,B$ and $C$ to the respective sides. Denote by $\ell_b$ the line being tangent tot he circumcircle of triangle $ABC$ and passing through $B$, and denote by $\ell_b'$ the reflection of $\ell_b$ in $BI$. Let $P_B$ by the intersection of $M_AM_C$ and $\ell_b$, and let $Q_B$ be the intersection of $H_AH_C$ and $\ell_b'$. Defined $\ell_c,\ell_c',P_C,Q_C$ analogously. If $R$ is the intersection of $P_BQ_B$ and $P_CQ_C$, prove that $RB=RC$.

Geometry Mathley 2011-12, 6.1

Show that the circumradius $R$ of a triangle $ABC$ equals the arithmetic mean of the oriented distances from its incenter $I$ and three excenters $I_a,I_b, I_c$ to any tangent $\tau$ to its circumcircle. In other words, if $\delta(P)$ denotes the distance from a point $P$ to $\tau$, then with appropriate choices of signs, we have $$\delta(I) \pm \delta_(I_a) \pm \delta_(I_b) \pm \delta_(I_c) = 4R$$ Luis González

2020 Saint Petersburg Mathematical Olympiad, 3.

$BB_1$ is the angle bisector of $\triangle ABC$, and $I$ is its incenter. The perpendicular bisector of segment $AC$ intersects the circumcircle of $\triangle AIC$ at $D$ and $E$. Point $F$ is on the segment $B_1C$ such that $AB_1=CF$.Prove that the four points $B, D, E$ and $F$ are concyclic.

Ukrainian TYM Qualifying - geometry, 2019.11

Let $\omega_a, \omega_b, \omega_c$ be the exscribed circles tangent to the sides $a, b, c$ of a triangle $ABC$, respectively, $ I_a, I_b, I_c$ be the centers of these circles, respectively, $T_a, T_b, T_c$ be the points of contact of these circles to the line $BC$, respectively. The lines $T_bI_c$ and $T_cI_b$ intersect at the point $Q$. Prove that the center of the circle inscribed in triangle $ABC$ lies on the line $T_aQ$.

2009 Romania Team Selection Test, 1

The quadrilateral $ ABCD$ inscribed in a circle wich has diameter $ BD$. Let $ A',B'$ are symmetric to $ A,B$ with respect to the line $ BD$ and $ AC$ respectively. If $ A'C \cap BD \equal{} P$ and $ AC\cap B'D \equal{} Q$ then prove that $ PQ \perp AC$

2010 AIME Problems, 15

In $ \triangle{ABC}$ with $ AB = 12$, $ BC = 13$, and $ AC = 15$, let $ M$ be a point on $ \overline{AC}$ such that the incircles of $ \triangle{ABM}$ and $ \triangle{BCM}$ have equal radii. Let $ p$ and $ q$ be positive relatively prime integers such that $ \tfrac{AM}{CM} = \tfrac{p}{q}$. Find $ p + q$.

2007 Hong kong National Olympiad, 1

Let $ABC$ be a triangle and $D$ be a point on $BC$ such that $AB+BD=AC+CD$. The line $AD$ intersects the incircle of triangle $ABC$ at $X$ and $Y$ where $X$ is closer to $A$ than $Y$ i. Suppose $BC$ is tangent to the incircle at $E$, prove that: 1) $EY$ is perpendicular to $AD$; 2) $XD=2IM$ where $I$ is the incentre and $M$ is the midpoint of $BC$.

2003 Finnish National High School Mathematics Competition, 1

The incentre of the triangle $ABC$ is $I.$ The rays $AI, BI$ and $CI$ intersect the circumcircle of the triangle $ABC$ at the points $D, E$ and $F,$ respectively. Prove that $AD$ and $EF$ are perpendicular.

2011 India Regional Mathematical Olympiad, 1

Let $ABC$ be an acute angled scalene triangle with circumcentre $O$ and orthocentre $H.$ If $M$ is the midpoint of $BC,$ then show that $AO$ and $HM$ intersect on the circumcircle of $ABC.$

2004 All-Russian Olympiad, 2

Let $ABCD$ be a circumscribed quadrilateral (i. e. a quadrilateral which has an incircle). The exterior angle bisectors of the angles $DAB$ and $ABC$ intersect each other at $K$; the exterior angle bisectors of the angles $ABC$ and $BCD$ intersect each other at $L$; the exterior angle bisectors of the angles $BCD$ and $CDA$ intersect each other at $M$; the exterior angle bisectors of the angles $CDA$ and $DAB$ intersect each other at $N$. Let $K_{1}$, $L_{1}$, $M_{1}$ and $N_{1}$ be the orthocenters of the triangles $ABK$, $BCL$, $CDM$ and $DAN$, respectively. Show that the quadrilateral $K_{1}L_{1}M_{1}N_{1}$ is a parallelogram.

1994 IMO Shortlist, 3

A circle $ C$ has two parallel tangents $ L'$ and$ L"$. A circle $ C'$ touches $ L'$ at $ A$ and $ C$ at $ X$. A circle $ C"$ touches $ L"$ at $ B$, $ C$ at $ Y$ and $ C'$ at $ Z$. The lines $ AY$ and $ BX$ meet at $ Q$. Show that $ Q$ is the circumcenter of $ XYZ$

2021 Saudi Arabia IMO TST, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2023 Polish MO Finals, 2

Given an acute triangle $ABC$ with their incenter $I$. Point $X$ lies on $BC$ on the same side as $B$ wrt $AI$. Point $Y$ lies on the shorter arc $AB$ of the circumcircle $ABC$. It is given that $$\angle AIX = \angle XYA = 120^\circ.$$ Prove that $YI$ is the angle bisector of $XYA$.

2019 Iran MO (3rd Round), 3

Consider a triangle $ABC$ with circumcenter $O$ and incenter $I$. Incircle touches sides $BC,CA$ and $AB$ at $D, E$ and $F$. $K$ is a point such that $KF$ is tangent to circumcircle of $BFD$ and $KE$ is tangent to circumcircle of $CED$. Prove that $BC,OI$ and $AK$ are concurrent.

1997 Taiwan National Olympiad, 8

Let $O$ be the circumcenter and $R$ be the circumradius of an acute triangle $ABC$. Let $AO$ meet the circumcircle of $OBC$ again at $D$, $BO$ meet the circumcircle of $OCA$ again at $E$, and $CO$ meet the circumcircle of $OAB$ again at $F$. Show that $OD.OE.OF\geq 8R^{3}$.

2009 Iran Team Selection Test, 1

Let $ ABC$ be a triangle and $ A'$ , $ B'$ and $ C'$ lie on $ BC$ , $ CA$ and $ AB$ respectively such that the incenter of $ A'B'C'$ and $ ABC$ are coincide and the inradius of $ A'B'C'$ is half of inradius of $ ABC$ . Prove that $ ABC$ is equilateral .

2017 Turkey Team Selection Test, 3

At the $ABC$ triangle the midpoints of $BC, AC, AB$ are respectively $D, E, F$ and the triangle tangent to the incircle at $G$, $H$ and $I$ in the same order.The midpoint of $AD$ is $J$. $BJ$ and $AG$ intersect at point $K$. The $C-$centered circle passing through $A$ cuts the $[CB$ ray at point $X$. The line passing through $K$ and parallel to the $BC$ and $AX$ meet at $U$. $IU$ and $BC$ intersect at the $P$ point. There is $Y$ point chosen at incircle. $PY$ is tangent to incircle at point $Y$. Prove that $D, E, F, Y$ are cyclic.

2019 Taiwan TST Round 3, 6

Given a triangle $ \triangle{ABC} $ with circumcircle $ \Omega $. Denote its incenter and $ A $-excenter by $ I, J $, respectively. Let $ T $ be the reflection of $ J $ w.r.t $ BC $ and $ P $ is the intersection of $ BC $ and $ AT $. If the circumcircle of $ \triangle{AIP} $ intersects $ BC $ at $ X \neq P $ and there is a point $ Y \neq A $ on $ \Omega $ such that $ IA = IY $. Show that $ \odot\left(IXY\right) $ tangents to the line $ AI $.