This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2015 India Regional MathematicaI Olympiad, 5

Let ABC be a right triangle with $\angle B = 90^{\circ}$.Let E and F be respectively the midpoints of AB and AC.Suppose the incentre I of ABC lies on the circumcircle of triangle AEF,find the ratio BC/AB.

2016 China Team Selection Test, 3

In cyclic quadrilateral $ABCD$, $AB>BC$, $AD>DC$, $I,J$ are the incenters of $\triangle ABC$,$\triangle ADC$ respectively. The circle with diameter $AC$ meets segment $IB$ at $X$, and the extension of $JD$ at $Y$. Prove that if the four points $B,I,J,D$ are concyclic, then $X,Y$ are the reflections of each other across $AC$.

Estonia Open Senior - geometry, 2014.1.4

In a plane there is a triangle $ABC$. Line $AC$ is tangent to circle $c_A$ at point $C$ and circle $c_A$ passes through point $B$. Line $BC$ is tangent to circle $c_B$ at point $C$ and circle $c_B$ passes through point $A$. The second intersection point $S$ of circles $c_A$ and $c_B$ coincides with the incenter of triangle $ABC$. Prove that the triangle $ABC$ is equilateral.

Indonesia MO Shortlist - geometry, g10

Given two circles with one of the centers of the circle is on the other circle. The two circles intersect at two points $C$ and $D$. The line through $D$ intersects the two circles again at $A$ and $ B$. Let $H$ be the midpoint of the arc $AC$ that does not contain $D$ and the segment $HD$ intersects circle that does not contain $H$ at point $E$. Show that $E$ is the center of the incircle of the triangle $ACD$.

Estonia Open Junior - geometry, 2011.1.3

Consider a parallelogram $ABCD$. a) Prove that if the incenter of the triangle $ABC$ is located on the diagonal $BD$, then the parallelogram $ABCD$ is a rhombus. b) Is the parallelogram $ABCD$ a rhombus whenever the circumcenter of the triangle $ABC$ is located on the diagonal $BD$?

2009 All-Russian Olympiad, 2

Let be given a triangle $ ABC$ and its internal angle bisector $ BD$ $ (D\in BC)$. The line $ BD$ intersects the circumcircle $ \Omega$ of triangle $ ABC$ at $ B$ and $ E$. Circle $ \omega$ with diameter $ DE$ cuts $ \Omega$ again at $ F$. Prove that $ BF$ is the symmedian line of triangle $ ABC$.

2021 Taiwan TST Round 3, 6

Let $ ABCD $ be a rhombus with center $ O. $ $ P $ is a point lying on the side $ AB. $ Let $ I, $ $ J, $ and $ L $ be the incenters of triangles $ PCD, $ $ PAD, $ and $PBC, $ respectively. Let $ H $ and $ K $ be orthocenters of triangles $ PLB $ and $ PJA, $ respectively. Prove that $ OI \perp HK. $ [i]Proposed by buratinogigle[/i]

2006 Singapore Junior Math Olympiad, 4

In $\vartriangle ABC$, the bisector of $\angle B$ meets $AC$ at $D$ and the bisector of $\angle C$ meets $AB$ at $E$. These bisectors intersect at $O$ and $OD = OE$. If $AD \ne AE$, prove that $\angle A = 60^o$.

2015 India National Olympiad, 1

Let $ABC$ be a right-angled triangle with $\angle{B}=90^{\circ}$. Let $BD$ is the altitude from $B$ on $AC$. Let $P,Q$ and $I $be the incenters of triangles $ABD,CBD$ and $ABC$ respectively.Show that circumcenter of triangle $PIQ$ lie on the hypotenuse $AC$.

2023 South East Mathematical Olympiad, 3

Tags: geometry , incenter
In acute triangle $ABC$ ($\triangle ABC$ is not an isosceles triangle), $I$ is its incentre, and circle $ \omega$ is its inscribed circle. $\odot\omega$ touches $BC, CA, AB$ at $D, E, F$ respectively. $AD$ intersects with $\odot\omega$ at $J$ ($J\neq D$), and the circumcircle of $\triangle BCJ$ intersects $\odot\omega$ at $K$ ($K\neq J$). The circumcircle of $\triangle BFK$ and $\triangle CEK$ meet at $L$ ($L\neq K$). Let $M$ be the midpoint of the major arc $BAC$. Prove that $M, I, L$ are collinear.

2012 Middle European Mathematical Olympiad, 6

Let $ ABCD $ be a convex quadrilateral with no pair of parallel sides, such that $ \angle ABC = \angle CDA $. Assume that the intersections of the pairs of neighbouring angle bisectors of $ ABCD $ form a convex quadrilateral $ EFGH $. Let $ K $ be the intersection of the diagonals of $ EFGH$. Prove that the lines $ AB $ and $ CD $ intersect on the circumcircle of the triangle $ BKD $.

2013 Sharygin Geometry Olympiad, 13

Let $A_1$ and $C_1$ be the tangency points of the incircle of triangle $ABC$ with $BC$ and $AB$ respectively, $A'$ and $C'$ be the tangency points of the excircle inscribed into the angle $B$ with the extensions of $BC$ and $AB$ respectively. Prove that the orthocenter $H$ of triangle $ABC$ lies on $A_1C_1$ if and only if the lines $A'C_1$ and $BA$ are orthogonal.

2015 NIMO Problems, 8

Tags: geometry , incenter
Let $ABC$ be a non-degenerate triangle with incenter $I$ and circumcircle $\Gamma$. Denote by $M_a$ the midpoint of the arc $\widehat{BC}$ of $\Gamma$ not containing $A$, and define $M_b$, $M_c$ similarly. Suppose $\triangle ABC$ has inradius $4$ and circumradius $9$. Compute the maximum possible value of \[IM_a^2+IM_b^2+IM_c^2.\][i]Proposed by David Altizio[/i]

1988 IMO, 2

In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that \[ \frac {E}{E_1} \geq 2. \]

Kyiv City MO 1984-93 - geometry, 1990.9.3

The angle bisectors $AA_1$ and $BB_1$ of the triangle ABC intersect at point $O$. Prove that when the angle $C$ is equal to $60^0$, then $OA_1=OB_1$

2012 Singapore Senior Math Olympiad, 1

A circle $\omega$ through the incentre$ I$ of a triangle $ABC$ and tangent to $AB$ at $A$, intersects the segment $BC$ at $D$ and the extension of$ BC$ at $E$. Prove that the line $IC$ intersects $\omega$ at a point $M$ such that $MD=ME$.

2024 Abelkonkurransen Finale, 4b

The pentagons $P_1P_2P_3P_4P_5$ and$I_1I_2I_3I_4I_5$ are cyclic, where $I_i$ is the incentre of the triangle $P_{i-1}P_iP_{i+1}$ (reckoned cyclically, that is $P_0=P_5$ and $P_6=P_1$). Show that the lines $P_1I_1, P_2I_2, P_3I_3, P_4I_4$ and $P_5I_5$ meet in a single point.

2001 IberoAmerican, 2

The incircle of the triangle $\triangle{ABC}$ has center at $O$ and it is tangent to the sides $BC$, $AC$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. The lines $BO$ and $CO$ intersect the line $YZ$ at the points $P$ and $Q$, respectively. Show that if the segments $XP$ and $XQ$ has the same length, then the triangle $\triangle ABC$ is isosceles.

2012 Iran Team Selection Test, 2

Consider $\omega$ is circumcircle of an acute triangle $ABC$. $D$ is midpoint of arc $BAC$ and $I$ is incenter of triangle $ABC$. Let $DI$ intersect $BC$ in $E$ and $\omega$ for second time in $F$. Let $P$ be a point on line $AF$ such that $PE$ is parallel to $AI$. Prove that $PE$ is bisector of angle $BPC$. [i]Proposed by Mr.Etesami[/i]

Estonia Open Senior - geometry, 2010.1.4

Circle $c$ passes through vertices $A$ and $B$ of an isosceles triangle $ABC$, whereby line $AC$ is tangent to it. Prove that circle $c$ passes through the circumcenter or the incenter or the orthocenter of triangle $ABC$.

2011 Romania Team Selection Test, 2

In triangle $ABC$, the incircle touches sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. Let $X$ be the feet of the altitude of the vertex $D$ on side $EF$ of triangle $DEF$. Prove that $AX,BY$ and $CZ$ are concurrent on the Euler line of the triangle $DEF$.

2014 Contests, 3

Tags: geometry , incenter
$AB$ is a chord of $O$ and $AB$ is not a diameter of $O$. The tangent lines to $O$ at $A$ and $B$ meet at $C$. Let $M$ and $N$ be the midpoint of the segments $AC$ and $BC$, respectively. A circle passing through $C$ and tangent to $O$ meets line $MN$ at $P$ and $Q$. Prove that $\angle PCQ = \angle CAB$.

2019 Ukraine Team Selection Test, 1

In a triangle $ABC$, $\angle ABC= 60^o$, point $I$ is the incenter. Let the points $P$ and $T$ on the sides $AB$ and $BC$ respectively such that $PI \parallel BC$ and $TI \parallel AB$ , and points $P_1$ and $T_1$ on the sides $AB$ and $BC$ respectively such that $AP_1 = BP$ and $CT_1 = BT$. Prove that point $I$ lies on segment $P_1T_1$. (Anton Trygub)

2007 France Team Selection Test, 3

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2001 India IMO Training Camp, 3

In a triangle $ABC$ with incircle $\omega$ and incenter $I$ , the segments $AI$ , $BI$ , $CI$ cut $\omega$ at $D$ , $E$ , $F$ , respectively. Rays $AI$ , $BI$ , $CI$ meet the sides $BC$ , $CA$ , $AB$ at $L$ , $M$ , $N$ respectively. Prove that: \[AL+BM+CN \leq 3(AD+BE+CF)\] When does equality occur?