This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2005 Cono Sur Olympiad, 1

Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.

2009 Sharygin Geometry Olympiad, 18

Given three parallel lines on the plane. Find the locus of incenters of triangles with vertices lying on these lines (a single vertex on each line).

2019 China Team Selection Test, 5

In $\Delta ABC$, $AD \perp BC$ at $D$. $E,F$ lie on line $AB$, such that $BD=BE=BF$. Let $I,J$ be the incenter and $A$-excenter. Prove that there exist two points $P,Q$ on the circumcircle of $\Delta ABC$ , such that $PB=QC$, and $\Delta PEI \sim \Delta QFJ$ .

2019 European Mathematical Cup, 3

In an acute triangle $ABC$ with $|AB| \not= |AC|$, let $I$ be the incenter and $O$ the circumcenter. The incircle is tangent to $\overline{BC}, \overline{CA}$ and $\overline{AB}$ in $D,E$ and $F$ respectively. Prove that if the line parallel to $EF$ passing through $I$, the line parallel to $AO$ passing through $D$ and the altitude from $A$ are concurrent, then the point of concurrence is the orthocenter of the triangle $ABC$. [i]Proposed by Petar Nizié-Nikolac[/i]

2015 Mexico National Olympiad, 5

Let $I$ be the incenter of an acute-angled triangle $ABC$. Line $AI$ cuts the circumcircle of $BIC$ again at $E$. Let $D$ be the foot of the altitude from $A$ to $BC$, and let $J$ be the reflection of $I$ across $BC$. Show $D$, $J$ and $E$ are collinear.

2016 Saudi Arabia BMO TST, 2

Let $ABC$ be a triangle and $I$ its incenter. The point $D$ is on segment $BC$ and the circle $\omega$ is tangent to the circumcirle of triangle $ABC$ but is also tangent to $DC, DA$ at $E, F$, respectively. Prove that $E, F$ and $I$ are collinear.

2020 Kazakhstan National Olympiad, 4

The incircle of the triangle $ ABC $ touches the sides of $ AB, BC, CA $ at points $ C_0, A_0, B_0 $, respectively. Let the point $ M $ be the midpoint of the segment connecting the vertex $ C_0 $ with the intersection point of the altitudes of the triangle $ A_0B_0C_0 $, point $ N $ be the midpoint of the arc $ ACB $ of the circumscribed circle of the triangle $ ABC $. Prove that line $ MN $ passes through the center of incircle of triangle $ ABC $.

1990 IMO Shortlist, 12

Let $ ABC$ be a triangle, and let the angle bisectors of its angles $ CAB$ and $ ABC$ meet the sides $ BC$ and $ CA$ at the points $ D$ and $ F$, respectively. The lines $ AD$ and $ BF$ meet the line through the point $ C$ parallel to $ AB$ at the points $ E$ and $ G$ respectively, and we have $ FG \equal{} DE$. Prove that $ CA \equal{} CB$. [i]Original formulation:[/i] Let $ ABC$ be a triangle and $ L$ the line through $ C$ parallel to the side $ AB.$ Let the internal bisector of the angle at $ A$ meet the side $ BC$ at $ D$ and the line $ L$ at $ E$ and let the internal bisector of the angle at $ B$ meet the side $ AC$ at $ F$ and the line $ L$ at $ G.$ If $ GF \equal{} DE,$ prove that $ AC \equal{} BC.$

Russian TST 2021, P2

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

1998 Slovenia National Olympiad, Problem 3

In a right-angled triangle $ABC$ with the hypotenuse $BC$, $D$ is the foot of the altitude from $A$. The line through the incenters of the triangles $ABD$ and $ADC$ intersects the legs of $\triangle ABC$ at $E$ and $F$. Prove that $A$ is the circumcenter of triangle $DEF$.

1990 Romania Team Selection Test, 4

Let $M$ be a point on the edge $CD$ of a tetrahedron $ABCD$ such that the tetrahedra $ABCM$ and $ABDM$ have the same total areas. We denote by $\pi_{AB}$ the plane $ABM$. Planes $\pi_{AC},...,\pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB},...,\pi_{CD}$ are concurrent in a certain point $N$, and show that $N$ is symmetric to the incenter $I$ with respect to the barycenter $G$.

2024 Thailand TST, 2

Tags: nithi , mmp , incenter , geometry
Let $ABC$ be triangle with incenter $I$ . Let $AI$ intersect $BC$ at $D$. Point $P,Q$ lies inside triangle $ABC$ such that $\angle BPA + \angle CQA = 180^\circ$ and $B,Q,I,P,C$ concyclic in order . $BP$ intersect $CQ$ at $X$. Prove that the intersection of $(ABC)$ and $(APQ)$ lies on line $XD$.

2024 Bangladesh Mathematical Olympiad, P5

Consider $\triangle XPQ$ and $\triangle YPQ$ such that $X$ and $Y$ are on the opposite sides of $PQ$ and the circumradius of $\triangle XPQ$ and the circumradius of $\triangle YPQ$ are the same. $I$ and $J$ are the incenters of $\triangle XPQ$ and $\triangle YPQ$ respectively. Let $M$ be the midpoint of $PQ$. Suppose $I, M, J$ are collinear. Prove that $XPYQ$ is a parallelogram.

2011 Pre - Vietnam Mathematical Olympiad, 3

Two circles $(O)$ and $(O')$ intersect at $A$ and $B$. Take two points $P,Q$ on $(O)$ and $(O')$, respectively, such that $AP=AQ$. The line $PQ$ intersects $(O)$ and $(O')$ respectively at $M,N$. Let $E,F$ respectively be the centers of the two arcs $BP$ and $BQ$ (which don't contains $A$). Prove that $MNEF$ is a cyclic quadrilateral.

2010 Korea National Olympiad, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

2019 Thailand Mathematical Olympiad, 8

Let $ABC$ be a triangle such that $AB\ne AC$ and $\omega$ be the circumcircle of this triangle. Let $I$ be the center of the inscribed circle of $ABC$ which touches $BC$ at $D$. Let the circle with diameter $AI$ meets $\omega$ again at $K$. If the line $AI$ intersects $\omega$ again at $M$, show that $K, D, M$ are collinear.

2015 Federal Competition For Advanced Students, P2, 5

Tags: incenter , geometry
Let I be the incenter of triangle $ABC$ and let $k$ be a circle through the points $A$ and $B$. The circle intersects * the line $AI$ in points $A$ and $P$ * the line $BI$ in points $B$ and $Q$ * the line $AC$ in points $A$ and $R$ * the line $BC$ in points $B$ and $S$ with none of the points $A,B,P,Q,R$ and $S$ coinciding and such that $R$ and $S$ are interior points of the line segments $AC$ and $BC$, respectively. Prove that the lines $PS$, $QR$, and $CI$ meet in a single point. (Stephan Wagner)

2013 Poland - Second Round, 2

Circles $o_1$ and $o_2$ with centers in $O_1$ and $O_2$, respectively, intersect in two different points $A$ and $B$, wherein angle $O_1AO_2$ is obtuse. Line $O_1B$ intersects circle $o_2$ in point $C \neq B$. Line $O_2B$ intersects circle $o_1$ in point $D \neq B$. Show that point $B$ is incenter of triangle $ACD$.

2024 Indonesia TST, G

Tags: incenter , geometry
Given an acute triangle $ABC$. The incircle with center $I$ touches $BC,CA,AB$ at $D,E,F$ respectively. Let $M,N$ be the midpoint of the minor arc of $AB$ and $AC$ respectively. Prove that $M,F,E,N$ are collinear if and only if $\angle BAC =90$$^{\circ}$

2013 Saudi Arabia BMO TST, 6

Let $ABC$ be a triangle with incenter $I,$ and let $D,E,F$ be the midpoints of sides $BC, CA, AB$, respectively. Lines $BI$ and $DE$ meet at $P $ and lines $CI$ and $DF$ meet at $Q$. Line $PQ$ meets sides $AB$ and $AC$ at $T$ and $S$, respectively. Prove that $AS = AT$

2020 China Girls Math Olympiad, 7

Let $O$ be the circumcenter of triangle $\triangle ABC$, where $\angle BAC=120^{\circ}$. The tangent at $A$ to $(ABC)$ meets the tangents at $B,C$ at $(ABC)$ at points $P,Q$ respectively. Let $H,I$ be the orthocenter and incenter of $\triangle OPQ$ respectively. Define $M,N$ as the midpoints of arc $\overarc{BAC}$ and $OI$ respectively, and let $MN$ meet $(ABC)$ again at $D$. Prove that $AD$ is perpendicular to $HI$.

2010 Greece National Olympiad, 3

A triangle $ ABC$ is inscribed in a circle $ C(O,R)$ and has incenter $ I$. Lines $ AI,BI,CI$ meet the circumcircle $ (O)$ of triangle $ ABC$ at points $ D,E,F$ respectively. The circles with diameter $ ID,IE,IF$ meet the sides $ BC,CA, AB$ at pairs of points $ (A_1,A_2), (B_1, B_2), (C_1, C_2)$ respectively. Prove that the six points $ A_1,A_2, B_1, B_2, C_1, C_2$ are concyclic. Babis

2019 Junior Balkan Team Selection Tests - Romania, 3

In the acute triangle $ABC$ point $I$ is the incenter, $O$ is the circumcenter, while $I_a$ is the excenter opposite the vertex $A$. Point $A'$ is the reflection of $A$ across the line $BC$. Prove that angles $\angle IOI_a$ and $\angle IA'I_a$ are equal.

2014 Middle European Mathematical Olympiad, 5

Let $ABC$ be a triangle with $AB < AC$. Its incircle with centre $I$ touches the sides $BC, CA,$ and $AB$ in the points $D, E,$ and $F$ respectively. The angle bisector $AI$ intersects the lines $DE$ and $DF$ in the points $X$ and $Y$ respectively. Let $Z$ be the foot of the altitude through $A$ with respect to $BC$. Prove that $D$ is the incentre of the triangle $XYZ$.

2012 India IMO Training Camp, 1

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.