This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 351

Kyiv City MO Juniors Round2 2010+ geometry, 2017.7.41

Let $AC$ be the largest side of the triangle $ABC$. The point M is selected on the ray $AC$ ray, and point $N$ on ray $CA$ such that $CN = CB$ and$ AM = AB$ . a) Prove that $\vartriangle ABC$ is isosceles if we know that $BM = BN$. b) Will the statement remain true if $AC$ is not necessarily the largest side of triangle $ABC$?

Cono Sur Shortlist - geometry, 2021.G7

Given an triangle $ABC$ isosceles at the vertex $A$, let $P$ and $Q$ be the touchpoints with $AB$ and $AC$, respectively with the circle $T$, which is tangent to both and is internally tangent to the circumcircle of $ABC$. Let $R$ and $S$ be the points of the circumscribed circle of $ABC$ such that $AP = AR = AS$ . Prove that $RS$ is tangent to $T$ .

2006 Portugal MO, 4

In the parallelogram $[ABCD], E$ is the midpoint of $[AD]$ and $F$ the orthogonal projection of $B$ on $[CE]$. Prove that the triangle $[ABF]$ is isosceles. [img]https://1.bp.blogspot.com/-DLmFg8ayEQ4/X4XMohA5TjI/AAAAAAAAMnk/thlIKnNUiCkuu9cg1Aq7Zltz8SenmFWuwCLcBGAsYHQ/s0/2006%2Bportugal%2Bp4.png[/img]

2018 Bosnia And Herzegovina - Regional Olympiad, 3

In triangle $ABC$ given is point $P$ such that $\angle ACP = \angle ABP = 10^{\circ}$, $\angle CAP = 20^{\circ}$ and $\angle BAP = 30^{\circ}$. Prove that $AC=BC$

2019 Costa Rica - Final Round, 6

Consider the right isosceles $\vartriangle ABC$ at $ A$. Let $L$ be the intersection of the bisector of $\angle ACB$ with $AB$ and $K$ the intersection point of $CL$ with the bisector of $BC$. Let $X$ be the point on line $AK$ such that $\angle KCX = 90^o$ and let $Y$ be the point of intersection of $CX$ with the circumcircle of $\vartriangle ABC$. Let $Y'$ the reflection of point $Y$ wrt $BC$. Prove that $B - K -Y'$. Notation: $A-B-C$ means than points $A,B,C$ are collinear in that order i.e. $ B$ lies between $ A$ and $C$.

2011 Sharygin Geometry Olympiad, 1

The diagonals of a trapezoid are perpendicular, and its altitude is equal to the medial line. Prove that this trapezoid is isosceles

1962 IMO, 6

Consider an isosceles triangle. let $R$ be the radius of its circumscribed circle and $r$ be the radius of its inscribed circle. Prove that the distance $d$ between the centers of these two circle is \[ d=\sqrt{R(R-2r)} \]

1936 Moscow Mathematical Olympiad, 023

All rectangles that can be inscribed in an isosceles triangle with two of their vertices on the triangle’s base have the same perimeter. Construct the triangle.

Durer Math Competition CD Finals - geometry, 2011.D2

In an right isosceles triangle $ABC$, there are two points on the hypotenuse $AB, K$ and $M$, respectively, such that $KCM$ angle is $45^o$ (point $K$ lies between $A$ and $M$). Prove that $AK^2 + MB^2 = KM^2$ [img]https://cdn.artofproblemsolving.com/attachments/2/c/e7c57e0651e5a4c492cc4ae4b115bf68a7a833.png[/img]

Kyiv City MO Seniors 2003+ geometry, 2020.10.5

Given an acute isosceles triangle $ABC, AK$ and $CN$ are its angle bisectors, $I$ is their intersection point . Let point $X$ be the other intersection point of the circles circumscribed around $\vartriangle ABC$ and $\vartriangle KBN$. Let $M$ be the midpoint of $AC$. Prove that the Euler line of $\vartriangle ABC$ is perpendicular to the line $BI$ if and only if the points $X, I$ and $M$ lie on the same line. (Kivva Bogdan)

1949-56 Chisinau City MO, 42

A trapezoid and an isosceles triangle are inscribed in a circle. The larger base of the trapezoid is the diameter of the circle, and the sides of the triangle are parallel to the sides of the trapezoid. Show that the trapezoid and the triangle have equal areas.

2008 Greece Junior Math Olympiad, 4

Let $ABCD$ be a trapezoid with $AD=a, AB=2a, BC=3a$ and $\angle A=\angle B =90 ^o$. Let $E,Z$ be the midpoints of the sides $AB ,CD$ respectively and $I$ be the foot of the perpendicular from point $Z$ on $BC$. Prove that : i) triangle $BDZ$ is isosceles ii) midpoint $O$ of $EZ$ is the centroid of triangle $BDZ$ iii) lines $AZ$ and $DI$ intersect at a point lying on line $BO$

2017 Hanoi Open Mathematics Competitions, 15

Show that an arbitrary quadrilateral can be divided into nine isosceles triangles.

1997 All-Russian Olympiad Regional Round, 10.7

Points $O_1$ and $O_2$ are the centers of the circumscribed and inscribed circles of an isosceles triangle $ABC$ ($AB = BC$). The circumcircles of triangles $ABC$ and $O_1O_2A$ intersect at points $A$ and $D$. Prove that line $BD$ is tangent to the circumcircle of the triangle $O_1O_2A$.

2024 Brazil Team Selection Test, 2

Let \( ABC \) be an acute-angled scalene triangle with circumcenter \( O \). Denote by \( M \), \( N \), and \( P \) the midpoints of sides \( BC \), \( CA \), and \( AB \), respectively. Let \( \omega \) be the circle passing through \( A \) and tangent to \( OM \) at \( O \). The circle \( \omega \) intersects \( AB \) and \( AC \) at points \( E \) and \( F \), respectively (where \( E \) and \( F \) are distinct from \( A \)). Let \( I \) be the midpoint of segment \( EF \), and let \( K \) be the intersection of lines \( EF \) and \( NP \). Prove that \( AO = 2IK \) and that triangle \( IMO \) is isosceles.

2017 Yasinsky Geometry Olympiad, 1

In the isosceles trapezoid with the area of $28$, a circle of radius $2$ is inscribed. Find the length of the side of the trapezoid.

1962 IMO Shortlist, 6

Consider an isosceles triangle. let $R$ be the radius of its circumscribed circle and $r$ be the radius of its inscribed circle. Prove that the distance $d$ between the centers of these two circle is \[ d=\sqrt{R(R-2r)} \]

2019 Federal Competition For Advanced Students, P2, 2

A (convex) trapezoid $ABCD$ is good, if it is inscribed in a circle, sides $AB$ and $CD$ are the bases and $CD$ is shorter than $AB$. For a good trapezoid $ABCD$ the following terms are defined: $\bullet$ The parallel to $AD$ passing through $B$ intersects the extension of side $CD$ at point $S$. $\bullet$ The two tangents passing through $S$ on the circumircle of the trapezoid touch the circle at $E$ and $F$, where $E$ lies on the same side of the straight line $CD$ as $A$. Give the simplest possible equivalent condition (expressed in side lengths and / or angles of the trapezoid) so that with a good trapezoid $ABCD$ the two angles $\angle BSE$ and $\angle FSC$ have the same measure. (Walther Janous)

2020 Chile National Olympiad, 3

Given the isosceles triangle $ABC$ with $| AB | = | AC | = 10$ and $| BC | = 15$. Let points $P$ in $BC$ and $Q$ in $AC$ chosen such that $| AQ | = | QP | = | P C |$. Calculate the ratio of areas of the triangles $(PQA): (ABC)$.

Durer Math Competition CD 1st Round - geometry, 2018.C+2

In an isosceles right-angled triangle $ABC$, the right angle is at $A$. $D$ lies so on the side $BC$ that $2CD = DB$. Let $E$ be the projection of $B$ onto $AD$. What is the measure fof angle $\angle CED $?

2019 Girls in Mathematics Tournament, 5

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $X$ and $K$ points over $AC$ and $AB$, respectively, such that $KX = CX$. Bisector of $\angle AKX$ intersects line $BC$ at $Z$. Show that $XZ$ passes through the midpoint of $BK$.

1988 Greece National Olympiad, 2

In isosceles triangle $ABC$ with $AB=AC$, consider point $D$ on the base $BC$ and point $E$ on side $AC$ such that $ \angle BAD = 2 \angle CDE$. Prove that $AD=AE$.

2008 Junior Balkan Team Selection Tests - Moldova, 11

Let $ABCD$ be a convex quadrilateral with $AD = BC, CD \nparallel AB, AD \nparallel BC$. Points $M$ and $N$ are the midpoints of the sides $CD$ and $AB$, respectively. a) If $E$ and $F$ are points, such that $MCBF$ and $ADME$ are parallelograms, prove that $\vartriangle BF N \equiv \vartriangle AEN$. b) Let $P = MN \cap BC$, $Q = AD \cap MN$, $R = AD \cap BC$. Prove that the triangle $PQR$ is iscosceles.

1991 Tournament Of Towns, (300) 1

The centre of circle $1$ lies on circle $2$. $A$ and $B$ are the intersection points of the circles. The tangent line to circle $2$ at point $B$ intersects circle $1$ at point $C$. Prove that $AB = BC$. (V. Prasovov, Moscow)

2020 Ukrainian Geometry Olympiad - April, 2

Let $ABC$ be an isosceles triangle with $AB=AC$. Circle $\Gamma$ lies outside $ABC$ and touches line $AC$ at point $C$. The point $D$ is chosen on circle $\Gamma$ such that the circumscribed circle of the triangle $ABD$ touches externally circle $\Gamma$. The segment $AD$ intersects circle $\Gamma$ at a point $E$ other than $D$. Prove that $BE$ is tangent to circle $\Gamma$ .