This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 68

2019 Oral Moscow Geometry Olympiad, 5

Given the segment $ PQ$ and a circle . A chord $AB$ moves around the circle, equal to $PQ$. Let $T$ be the intersection point of the perpendicular bisectors of the segments $AP$ and $BQ$. Prove that all points of $T$ thus obtained lie on one line.

1969 IMO Longlists, 39

$(HUN 6)$ Find the positions of three points $A,B,C$ on the boundary of a unit cube such that $min\{AB,AC,BC\}$ is the greatest possible.

1986 Traian Lălescu, 2.2

Let be a line $ d: 3x+4y-5=0 $ on a Cartesian plane. We mark with $ \mathcal{L} $ de locus of the planar points $ P $ such that the distance from $ P $ to $ d $ is double the distance from $ P $ to the origin. Let be $ B_{\lambda } ,C_{\lambda }\in\mathcal{L} $ such that $ C_{\lambda } -B_{\lambda } +\lambda =0. $ Find the locus of the middlepoints of the segments $ B_{\lambda }C_{\lambda }, $ if $ \lambda\in\mathbb{R} $ is variable.

1969 IMO Shortlist, 12

$(CZS 1)$ Given a unit cube, find the locus of the centroids of all tetrahedra whose vertices lie on the sides of the cube.

1960 IMO Shortlist, 5

Consider the cube $ABCDA'B'C'D'$ (with face $ABCD$ directly above face $A'B'C'D'$). a) Find the locus of the midpoints of the segments $XY$, where $X$ is any point of $AC$ and $Y$ is any piont of $B'D'$; b) Find the locus of points $Z$ which lie on the segment $XY$ of part a) with $ZY=2XZ$.

1969 IMO Shortlist, 1

$(BEL 1)$ A parabola $P_1$ with equation $x^2 - 2py = 0$ and parabola $P_2$ with equation $x^2 + 2py = 0, p > 0$, are given. A line $t$ is tangent to $P_2.$ Find the locus of pole $M$ of the line $t$ with respect to $P_1.$

1973 IMO Shortlist, 1

Let a tetrahedron $ABCD$ be inscribed in a sphere $S$. Find the locus of points $P$ inside the sphere $S$ for which the equality \[\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4\] holds, where $A_1,B_1, C_1$, and $D_1$ are the intersection points of $S$ with the lines $AP,BP,CP$, and $DP$, respectively.

1971 IMO Longlists, 17

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.

1960 IMO, 7

An isosceles trapezoid with bases $a$ and $c$ and altitude $h$ is given. a) On the axis of symmetry of this trapezoid, find all points $P$ such that both legs of the trapezoid subtend right angles at $P$; b) Calculate the distance of $p$ from either base; c) Determine under what conditions such points $P$ actually exist. Discuss various cases that might arise.

1965 IMO Shortlist, 5

Consider $\triangle OAB$ with acute angle $AOB$. Thorugh a point $M \neq O$ perpendiculars are drawn to $OA$ and $OB$, the feet of which are $P$ and $Q$ respectively. The point of intersection of the altitudes of $\triangle OPQ$ is $H$. What is the locus of $H$ if $M$ is permitted to range over a) the side $AB$; b) the interior of $\triangle OAB$.

1986 IMO Longlists, 33

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

1978 IMO Shortlist, 13

We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.

1966 IMO Shortlist, 16

We are given a circle $K$ with center $S$ and radius $1$ and a square $Q$ with center $M$ and side $2$. Let $XY$ be the hypotenuse of an isosceles right triangle $XY Z$. Describe the locus of points $Z$ as $X$ varies along $K$ and $Y$ varies along the boundary of $Q.$

2017 Ukrainian Geometry Olympiad, 3

Circles ${w}_{1},{w}_{2}$ intersect at points ${{A}_{1}} $ and ${{A}_{2}} $. Let $B$ be an arbitrary point on the circle ${{w}_{1}}$, and line $B{{A}_{2}}$ intersects circle ${{w}_{2}}$ at point $C$. Let $H$ be the orthocenter of $\Delta B{{A}_{1}}C$. Prove that for arbitrary choice of point $B$, the point $H$ lies on a certain fixed circle.

2004 Germany Team Selection Test, 2

Let $d$ be a diameter of a circle $k$, and let $A$ be an arbitrary point on this diameter $d$ in the interior of $k$. Further, let $P$ be a point in the exterior of $k$. The circle with diameter $PA$ meets the circle $k$ at the points $M$ and $N$. Find all points $B$ on the diameter $d$ in the interior of $k$ such that \[\measuredangle MPA = \measuredangle BPN \quad \text{and} \quad PA \leq PB.\] (i. e. give an explicit description of these points without using the points $M$ and $N$).

1986 IMO Shortlist, 1

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

1966 IMO Longlists, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

1995 China Team Selection Test, 2

Given a fixed acute angle $\theta$ and a pair of internally tangent circles, let the line $l$ which passes through the point of tangency, $A$, cut the larger circle again at $B$ ($l$ does not pass through the centers of the circles). Let $M$ be a point on the major arc $AB$ of the larger circle, $N$ the point where $AM$ intersects the smaller circle, and $P$ the point on ray $MB$ such that $\angle MPN = \theta$. Find the locus of $P$ as $M$ moves on major arc $AB$ of the larger circle.

1967 IMO Longlists, 9

Circle $k$ and its diameter $AB$ are given. Find the locus of the centers of circles inscribed in the triangles having one vertex on $AB$ and two other vertices on $k.$

2007 Sharygin Geometry Olympiad, 3

Given two circles intersecting at points $P$ and $Q$. Let C be an arbitrary point distinct from $P$ and $Q$ on the former circle. Let lines $CP$ and $CQ$ intersect again the latter circle at points A and B, respectively. Determine the locus of the circumcenters of triangles $ABC$.

2011 Sharygin Geometry Olympiad, 7

Let a point $M$ not lying on coordinates axes be given. Points $Q$ and $P$ move along $Y$ - and $X$-axis respectively so that angle $P M Q$ is always right. Find the locus of points symmetric to $M$ wrt $P Q$.

1966 IMO Longlists, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

2017 Yasinsky Geometry Olympiad, 6

Given a circle $\omega$ of radius $r$ and a point $A$, which is far from the center of the circle at a distance $d<r$. Find the geometric locus of vertices $C$ of all possible $ABCD$ rectangles, where points $B$ and $D$ lie on the circle $\omega$.

1966 IMO Shortlist, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

1971 IMO Shortlist, 4

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.