Found problems: 300
2018 Oral Moscow Geometry Olympiad, 2
Bisectors of angle $C$ and externalangle $A$ of trapezoid $ABCD$ with bases $BC$ and $AD$ intersect at point $M$, and the bisector of angle $B$ and external angle $D$ intersect at point $N$. Prove that the midpoint of the segment $MN$ is equidistant from the lines $AB$ and $CD$.
1995 Bulgaria National Olympiad, 4
Points $A_1,B_1,C_1$ are selected on the sides $BC$,$CA$,$AB$ respectively of an equilateral triangle $ABC$ in such a way that the inradii of the triangles $C_1AB_1$, $A_1BC_1$, $B_1CA_1$ and $A_1B_1C_1$ are equal. Prove that $A_1,B_1,C_1$ are the midpoints of the corresponding sides.
1990 IMO Shortlist, 9
The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
Brazil L2 Finals (OBM) - geometry, 2023.2
Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.
2016 Czech-Polish-Slovak Junior Match, 5
Let $ABC$ be a triangle with $AB : AC : BC =5:5:6$. Denote by $M$ the midpoint of $BC$ and by $N$ the point on the segment $BC$ such that $BN = 5 \cdot CN$. Prove that the circumcenter of triangle $ABN$ is the midpoint of the segment connecting the incenters of triangles $ABC$ and $ABM$.
Slovakia
2014 Danube Mathematical Competition, 3
Let $ABC$ be a triangle with $\angle A<90^o, AB \ne AC$. Denote $H$ the orthocenter of triangle $ABC$, $N$ the midpoint of segment $[AH]$, $M$ the midpoint of segment $[BC]$ and $D$ the intersection point of the angle bisector of $\angle BAC$ with the segment $[MN]$. Prove that $<ADH=90^o$
2005 Sharygin Geometry Olympiad, 3
Given a circle and a point $K$ inside it. An arbitrary circle equal to the given one and passing through the point $K$ has a common chord with the given circle. Find the geometric locus of the midpoints of these chords.
Ukraine Correspondence MO - geometry, 2015.11
Let $ABC$ be an non- isosceles triangle, $H_a$, $H_b$, and $H_c$ be the feet of the altitudes drawn from the vertices $A, B$, and $C$, respectively, and $M_a$, $M_b$, and $M_c$ be the midpoints of the sides $BC$, $CA$, and $AB$, respectively. The circumscribed circles of triangles $AH_bH_c$ and $AM_bM_c$ intersect for second time at point $A'$. The circumscribed circles of triangles $BH_cH_a$ and $BM_cM_a$ intersect for second time at point $B'$. The circumscribed circles of triangles $CH_aH_b$ and $CM_aM_b$ intersect for second time at point $C'$. Prove that points $A', B'$ and $C'$ lie on the same line.
2011 Korea Junior Math Olympiad, 5
In triangle $ABC$, ($AB \ne AC$), let the orthocenter be $H$, circumcenter be $O$, and the midpoint of $BC$ be $M$. Let $HM \cap AO = D$. Let $P,Q,R,S$ be the midpoints of $AB,CD,AC,BD$. Let $X = PQ\cap RS$. Find $AH/OX$.
1956 Moscow Mathematical Olympiad, 325
On sides $AB$ and $CB$ of $\vartriangle ABC$ there are drawn equal segments, $AD$ and $CE$, respectively, of arbitrary length (but shorter than min($AB,BC$)). Find the locus of midpoints of all possible segments $DE$.
2017 Sharygin Geometry Olympiad, P19
Let cevians $AA', BB'$ and $CC'$ of triangle $ABC$ concur at point $P.$ The circumcircle of triangle $PA'B'$ meets $AC$ and $BC$ at points $M$ and $N$ respectively, and the circumcircles of triangles $PC'B'$ and $PA'C'$ meet $AC$ and $BC$ for the second time respectively at points $K$ and $L$. The line $c$ passes through the midpoints of segments $MN$ and $KL$. The lines $a$ and $b$ are defined similarly. Prove that $a$, $b$ and $c$ concur.
2018 Yasinsky Geometry Olympiad, 3
In the triangle $ABC$, $\angle B = 2 \angle C$, $AD$ is altitude, $M$ is the midpoint of the side $BC$. Prove that $AB = 2DM$.
2019 SAFEST Olympiad, 1
Let $ABC$ be an isosceles triangle with $AB = AC$. Let $AD$ be the diameter of the circumcircle of $ABC$ and let $P$ be a point on the smaller arc $BD$. The line $DP$ intersects the rays $AB$ and $AC$ at points $M$ and $N$, respectively. The line $AD$ intersects the lines $BP$ and $CP$ at points $Q$ and $R$, respectively. Prove that the midpoint of $MN$ lies on the circumcircle of $PQR$
2009 Austria Beginners' Competition, 4
The center $M$ of the square $ABCD$ is reflected wrt $C$. This gives point $E$. The intersection of the circumcircle of the triangle $BDE$ with the line $AM$ is denoted by $S$. Show that $S$ bisects the distance $AM$.
(W. Janous, WRG Ursulinen, Innsbruck)
2012 Czech-Polish-Slovak Junior Match, 1
Point $P$ lies inside the triangle $ABC$. Points $K, L, M$ are symmetrics of point $P$ wrt the midpoints of the sides $BC, CA, AB$. Prove that the straight $AK, BL, CM$ intersect at one point.
Kharkiv City MO Seniors - geometry, 2017.10.4
In the quadrangle $ABCD$, the angle at the vertex $A$ is right. Point $M$ is the midpoint of the side $BC$. It turned out that $\angle ADC = \angle BAM$. Prove that $\angle ADB = \angle CAM$.
2010 Junior Balkan Team Selection Tests - Romania, 2
Let $ABC$ be a triangle and $D, E, F$ the midpoints of the sides $BC, CA, AB$ respectively. Show that $\angle DAC = \angle ABE$ if and only if $\angle AFC = \angle BDA$
2017 Singapore Senior Math Olympiad, 3
There are $2017$ distinct points in the plane. For each pair of these points, construct the midpoint of the segment joining the pair of points. What is the minimum number of distinct midpoints among all possible ways of placing the points?
2012 Czech-Polish-Slovak Junior Match, 2
On the circle $k$, the points $A,B$ are given, while $AB$ is not the diameter of the circle $k$. Point $C$ moves along the long arc $AB$ of circle $k$ so that the triangle $ABC$ is acute. Let $D,E$ be the feet of the altitudes from $A, B$ respectively. Let $F$ be the projection of point $D$ on line $AC$ and $G$ be the projection of point $E$ on line $BC$.
(a) Prove that the lines $AB$ and $FG$ are parallel.
(b) Determine the set of midpoints $S$ of segment $FG$ while along all allowable positions of point $C$.
Kyiv City MO Juniors 2003+ geometry, 2010.8.5
In an acute-angled triangle $ABC$, the points $M$ and $N$ are the midpoints of the sides $AB$ and $AC$, respectively. For an arbitrary point $S$ lying on the side of $BC$ prove that the condition holds $(MB- MS)(NC-NS) \le 0$
2014 Junior Balkan Team Selection Tests - Romania, 4
In a circle, consider two chords $[AB], [CD]$ that intersect at $E$, lines $AC$ and $BD$ meet at $F$. Let $G$ be the projection of $E$ onto $AC$. We denote by $M,N,K$ the midpoints of the segment lines $[EF] ,[EA]$ and $[AD]$, respectively. Prove that the points $M, N,K,G$ are concyclic.
1983 IMO Longlists, 69
Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.
2024 Brazil National Olympiad, 2
Let \( ABC \) be a scalene triangle. Let \( E \) and \( F \) be the midpoints of sides \( AC \) and \( AB \), respectively, and let \( D \) be any point on segment \( BC \). The circumcircles of triangles \( BDF \) and \( CDE \) intersect line \( EF \) at points \( K \neq F \), and \( L \neq E \), respectively, and intersect at points \( X \neq D \). The point \( Y \) is on line \( DX \) such that \( AY \) is parallel to \( BC \). Prove that points \( K \), \( L \), \( X \), and \( Y \) lie on the same circle.
2007 Oral Moscow Geometry Olympiad, 5
Given triangle $ABC$. Points $A_1,B_1$ and $C_1$ are symmetric to its vertices with respect to opposite sides. $C_2$ is the intersection point of lines $AB_1$ and $BA_1$. Points$ A_2$ and $B_2$ are defined similarly. Prove that the lines $A_1 A_2, B_1 B_2$ and $C_1 C_2$ are parallel.
(A. Zaslavsky)
1982 IMO Longlists, 36
A non-isosceles triangle $A_{1}A_{2}A_{3}$ has sides $a_{1}$, $a_{2}$, $a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1}A_{2}A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1}S_{1}$, $M_{2}S_{2}$ and $M_{3}S_{3}$ are concurrent.