Found problems: 300
2017 Peru IMO TST, 3
The inscribed circle of the triangle $ABC$ is tangent to the sides $BC, AC$ and $AB$ at points $D, E$ and $F$, respectively. Let $M$ be the midpoint of $EF$. The circle circumscribed around the triangle $DMF$ intersects line $AB$ at $L$, the circle circumscribed around the triangle $DME$ intersects the line $AC$ at $K$. Prove that the circle circumscribed around the triangle $AKL$ is tangent to the line $BC$.
2008 IMAC Arhimede, 4
Let $ABCD$ be a random tetrahedron. Let $E$ and $F$ be the midpoints of segments $AB$ and $CD$, respectively. If the angle $a$ is between $AD$ and $BC$, determine $cos a$ in terms of $EF, AD$ and $BC$.
Kyiv City MO Seniors 2003+ geometry, 2019.11.2
In an acute-angled triangle $ABC$, in which $AB<AC$, the point $M$ is the midpoint of the side $BC, K$ is the midpoint of the broken line segment $BAC$ . Prove that $\sqrt2 KM > AB$.
(George Naumenko)
2018 Junior Balkan Team Selection Tests - Romania, 2
Let $ABC$ be an acute triangle, with $AB \ne AC$. Let $D$ be the midpoint of the line segment $BC$, and let $E$ and $F$ be the projections of $D$ onto the sides $AB$ and $AC$, respectively. If $M$ is the midpoint of the line segment $EF$, and $O$ is the circumcenter of triangle $ABC$, prove that the lines $DM$ and $AO$ are parallel.
[hide=PS] As source was given [url=https://artofproblemsolving.com/community/c629086_caucasus_mathematical_olympiad]Caucasus MO[/url], but I was unable to find this problem in the contest collections [/hide]
Kharkiv City MO Seniors - geometry, 2012.10.4
In the acute-angled triangle $ABC$ on the sides $AC$ and $BC$, points $D$ and $E$ are chosen such that points $A, B, E$, and $D$ lie on one circle. The circumcircle of triangle $DEC$ intersects side $AB$ at points $X$ and $Y$. Prove that the midpoint of segment $XY$ is the foot of the altitude of the triangle, drawn from point $C$.
2007 Dutch Mathematical Olympiad, 5
A triangle $ABC$ and a point $P$ inside this triangle are given.
Define $D, E$ and $F$ as the midpoints of $AP, BP$ and $CP$, respectively. Furthermore, let $R$ be the intersection of $AE$ and $BD, S$ the intersection of $BF$ and $CE$, and $T$ the intersection of $CD$ and $AF$.
Prove that the area of hexagon $DRESFT$ is independent of the position of $P$ inside the triangle.
[asy]
unitsize(1 cm);
pair A, B, C, D, E, F, P, R, S, T;
A = (0,0);
B = (5,0);
C = (1.5,4);
P = (2,2);
D = (A + P)/2;
E = (B + P)/2;
F = (C + P)/2;
R = extension(A,E,B,D);
S = extension(B,F,C,E);
T = extension(C,D,A,F);
draw(A--B--C--cycle);
draw(A--P);
draw(B--P);
draw(C--P);
draw(A--F--B);
draw(B--D--C);
draw(C--E--A);
dot("$A$", A, SW);
dot("$B$", B, SE);
dot("$C$", C, N);
dot("$D$", D, dir(270));
dot("$E$", E, dir(270));
dot("$F$", F, W);
dot("$P$", P, dir(270));
dot("$R$", R, dir(270));
dot("$S$", S, SW);
dot("$T$", T, SE);
[/asy]
1983 Tournament Of Towns, (040) O2
On sides $AB, BC$ and $CA$ of triangle $ABC$ are located points $P, M$ and $K$, respectively, so that $AM, BK$ and $CP$ intersect in one point and the sum of the vectors $\overrightarrow{AM}, \overrightarrow{BK}$ and $\overrightarrow{CP}$ equals $ \overrightarrow{0}$. Prove that $K, M$ and $P$ are midpoints of the sides of triangle $ABC$ on which they are located.
2012 Oral Moscow Geometry Olympiad, 3
Given an equilateral triangle $ABC$ and a straight line $\ell$, passing through its center. Intersection points of this line with sides $AB$ and $BC$ are reflected wrt to the midpoints of these sides respectively. Prove that the line passing through the resulting points, touches the inscribed circle triangle $ABC$.
2012 Tournament of Towns, 4
In a triangle $ABC$ two points, $C_1$ and $A_1$ are marked on the sides $AB$ and $BC$ respectively (the points do not coincide with the vertices). Let $K$ be the midpoint of $A_1C_1$ and $I$ be the incentre of the triangle $ABC$. Given that the quadrilateral $A_1BC_1I$ is cyclic, prove that the angle $AKC$ is obtuse.
2018 Ukraine Team Selection Test, 10
Let $ABC$ be a triangle with $AH$ altitude. The point $K$ is chosen on the segment $AH$ as follows such that $AH =3KH$. Let $O$ be the center of the circle circumscribed around by triangle $ABC, M$ and $N$ be the midpoints of $AC$ and AB respectively. Lines $KO$ and $MN$ intersect at the point $Z$, a perpendicular to $OK$ passing through point $Z$ intersects lines $AC$ and $AB$ at points $X$ and $Y$ respectively. Prove that $\angle XKY =\angle CKB$.
2019 SAFEST Olympiad, 1
Let $ABC$ be an isosceles triangle with $AB = AC$. Let $AD$ be the diameter of the circumcircle of $ABC$ and let $P$ be a point on the smaller arc $BD$. The line $DP$ intersects the rays $AB$ and $AC$ at points $M$ and $N$, respectively. The line $AD$ intersects the lines $BP$ and $CP$ at points $Q$ and $R$, respectively. Prove that the midpoint of $MN$ lies on the circumcircle of $PQR$
2020 Australian Maths Olympiad, 3
Let $ABC$ be a triangle with $\angle ACB=90^{\circ}$. Suppose that the tangent line at $C$ to the circle passing through $A,B,C$ intersects the line $AB$ at $D$. Let $E$ be the midpoint of $CD$ and let $F$ be a point on $EB$ such that $AF$ is parallel to $CD$.
Prove that the lines $AB$ and $CF$ are perpendicular.
1980 All Soviet Union Mathematical Olympiad, 287
The points $M$ and $P$ are the midpoints of $[BC]$ and $[CD]$ sides of a convex quadrangle $ABCD$. It is known that $|AM| + |AP| = a$. Prove that $ABCD$ has area less than $\frac{a^2}{2}$.
2015 Irish Math Olympiad, 1
In the triangle $ABC$, the length of the altitude from $A$ to $BC$ is equal to $1$. $D$ is the midpoint of $AC$. What are the possible lengths of $BD$?
Kharkiv City MO Seniors - geometry, 2015.11.3
In the rectangle $ABCD$, point $M$ is the midpoint of the side $BC$. The points $P$ and $Q$ lie on the diagonal $AC$ such that $\angle DPC = \angle DQM = 90^o$. Prove that $Q$ is the midpoint of the segment $AP$.
1998 Slovenia Team Selection Test, 5
On a line $p$ which does not meet a circle $K$ with center $O$, point $P$ is taken such that $OP \perp p$. Let $X \ne P$ be an arbitrary point on $p$. The tangents from $X$ to $K$ touch it at $A$ and $B$. Denote by $C$ and $D$ the orthogonal projections of $P$ on $AX$ and $BX$ respectively.
(a) Prove that the intersection point $Y$ of $AB$ and $OP$ is independent of the location of $X$.
(b) Lines $CD$ and $OP$ meet at $Z$. Prove that $Z$ is the midpoint of $P$.
2007 Oral Moscow Geometry Olympiad, 5
Given triangle $ABC$. Points $A_1,B_1$ and $C_1$ are symmetric to its vertices with respect to opposite sides. $C_2$ is the intersection point of lines $AB_1$ and $BA_1$. Points$ A_2$ and $B_2$ are defined similarly. Prove that the lines $A_1 A_2, B_1 B_2$ and $C_1 C_2$ are parallel.
(A. Zaslavsky)
2013 Oral Moscow Geometry Olympiad, 3
The bisectors $AA_1$ and $CC_1$ of the right triangle $ABC$ ($\angle B = 90^o$) intersect at point $I$. The line passing through the point $C_1$ and perpendicular on the line $AA_1$ intersects the line that passes through $A_1$ and is perpendicular on $CC_1$, at the point $K$. Prove that the midpoint of the segment $KI$ lies on segment $AC$.
2010 Dutch BxMO TST, 1
Let $ABCD$ be a trapezoid with $AB // CD$, $2|AB| = |CD|$ and $BD \perp BC$. Let $M$ be the midpoint of $CD$ and let $E$ be the intersection $BC$ and $AD$. Let $O$ be the intersection of $AM$ and $BD$. Let $N$ be the intersection of $OE$ and $AB$.
(a) Prove that $ABMD$ is a rhombus.
(b) Prove that the line $DN$ passes through the midpoint of the line segment $BE$.
2018 Yasinsky Geometry Olympiad, 3
In the triangle $ABC$, $\angle B = 2 \angle C$, $AD$ is altitude, $M$ is the midpoint of the side $BC$. Prove that $AB = 2DM$.
1945 Moscow Mathematical Olympiad, 102
Segments connect vertices $A, B, C$ of $\vartriangle ABC$ with respective points $A_1, B_1, C_1$ on the opposite sides of the triangle. Prove that the midpoints of segments $AA_1, BB_1, CC_1$ do not belong to one straight line.
1956 Moscow Mathematical Olympiad, 325
On sides $AB$ and $CB$ of $\vartriangle ABC$ there are drawn equal segments, $AD$ and $CE$, respectively, of arbitrary length (but shorter than min($AB,BC$)). Find the locus of midpoints of all possible segments $DE$.
Novosibirsk Oral Geo Oly IX, 2016.4
The two angles of the squares are adjacent, and the extension of the diagonals of one square intersect the diagonal of another square at point $O$ (see figure). Prove that $O$ is the midpoint of $AB$.
[img]https://cdn.artofproblemsolving.com/attachments/7/8/8daaaa55c38e15c4a8ac7492c38707f05475cc.png[/img]
2019 BMT Spring, 2
Let $A, B, C$ be unique collinear points$ AB = BC =\frac13$. Let $P$ be a point that lies on the circle centered at $B$ with radius $\frac13$ and the circle centered at $C$ with radius $\frac13$ . Find the measure of angle $\angle PAC$ in degrees.
Kyiv City MO Juniors 2003+ geometry, 2011.89.4
Let $ABCD$ be an inscribed quadrilateral. Denote the midpoints of the sides $AB, BC, CD$ and $DA$ through $M, L, N$ and $K$, respectively. It turned out that $\angle BM N = \angle MNC$. Prove that:
i) $\angle DKL = \angle CLK$.
ii) in the quadrilateral $ABCD$ there is a pair of parallel sides.