Found problems: 1679
1996 Turkey Team Selection Test, 1
The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ with $S_{ABC} = S_{ADC}$ intersect at $E$. The lines through $E$ parallel to $AD$, $DC$, $CB$, $BA$
meet $AB$, $BC$, $CD$, $DA$ at $K$, $L$, $M$, $N$, respectively. Compute the ratio $\frac{S_{KLMN}}{S_{ABC}}$
2012 India Regional Mathematical Olympiad, 1
Let $ABC$ be a triangle and $D$ be a point on the segment $BC$ such that $DC = 2BD$. Let $E$ be the mid-point of $AC$. Let $AD$ and $BE$ intersect in $P$. Determine the ratios $BP:PE$ and $AP:PD$.
PEN A Problems, 26
Let $m$ and $n$ be arbitrary non-negative integers. Prove that \[\frac{(2m)!(2n)!}{m! n!(m+n)!}\] is an integer.
2011 AMC 10, 13
Two real numbers are selected independently at random from the interval [-20, 10]. What is the probability that the product of those numbers is greater than zero?
$ \textbf{(A)}\ \frac{1}{9} \qquad
\textbf{(B)}\ \frac{1}{3} \qquad
\textbf{(C)}\ \frac{4}{9} \qquad
\textbf{(D)}\ \frac{5}{9} \qquad
\textbf{(E)}\ \frac{2}{3} $
IV Soros Olympiad 1997 - 98 (Russia), 11.10
The perimeter of triangle $ABC$ is $k$ times larger than side $BC$, $AB \ne AC$. In what ratio does the median to side $BC$ divide the diameter of the circle inscribed in this triangle, perpendicular to this side?
1950 AMC 12/AHSME, 49
A triangle has a fixed base $AB$ that is $2$ inches long. The median from $A$ to side $BC$ is $ 1\frac{1}{2}$ inches long and can have any position emanating from $A$. The locus of the vertex $C$ of the triangle is:
$\textbf{(A)}\ \text{A straight line }AB,1\dfrac{1}{2}\text{ inches from }A \qquad\\
\textbf{(B)}\ \text{A circle with }A\text{ as center and radius }2\text{ inches} \qquad\\
\textbf{(C)}\ \text{A circle with }A\text{ as center and radius }3\text{ inches} \qquad\\
\textbf{(D)}\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA \qquad\\
\textbf{(E)}\ \text{An ellipse with }A\text{ as focus}$
Estonia Open Senior - geometry, 2003.2.4
Consider the points $D, E$ and $F$ on the respective sides $BC, CA$ and $AB$ of the triangle $ABC$ in a way that the segments $AD, BE$ and $CF$ have a common point $P$. Let $\frac{|AP|}{|PD|}= x,$ $\frac{|BP|}{|PE|}= y$ and $\frac{|CP|}{|PF|}= z$. Prove that $xyz - (x + y + z) = 2$.
2013 APMO, 5
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.
2006 AMC 12/AHSME, 11
Joe and JoAnn each bought 12 ounces of coffee in a 16-ounce cup. Joe drank 2 ounces of his coffee and then added 2 ounces of cream. JoAnn added 2 ounces of cream, stirred the coffee well, and then drank 2 ounces. What is the resulting ratio of the amount of cream in Joe's coffee to that in JoAnn's coffee?
$ \textbf{(A) } \frac 67 \qquad \textbf{(B) } \frac {13}{14} \qquad \textbf{(C) } 1 \qquad \textbf{(D) } \frac {14}{13} \qquad \textbf{(E) } \frac 76$
2014 AMC 10, 4
Susie pays for $4$ muffins and $3$ bananas. Calvin spends twice as much paying for $2$ muffins and $16$ bananas. A muffin is how many times as expensive as a banana?
$ \textbf {(A) } \frac{3}{2} \qquad \textbf {(B) } \frac{5}{3} \qquad \textbf {(C) } \frac{7}{4} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \frac{13}{4}$
1993 Korea - Final Round, 6
Consider a triangle $ABC$ with $BC = a, CA = b, AB = c.$ Let $D$ be the midpoint of $BC$ and $E$ be the intersection of the bisector of $A$ with $BC$ . The circle through $A, D, E$ meets $AC, AB$ again at $F, G$ respectively. Let $H\not = B$ be a point on $AB$ with $BG = GH$ . Prove that triangles $EBH$ and $ABC$ are similar and find the ratio of their areas.
2013 AIME Problems, 7
A rectangular box has width $12$ inches, length $16$ inches, and height $\tfrac{m}{n}$ inches, where $m$ and $n$ are relatively prime positive integers. Three faces of the box meet at a corner of the box. The center points of those three faces are the vertices of a triangle with an area of $30$ square inches. Find $m+n$.
2013 Turkey Team Selection Test, 2
Let the incircle of the triangle $ABC$ touch $[BC]$ at $D$ and $I$ be the incenter of the triangle. Let $T$ be midpoint of $[ID]$. Let the perpendicular from $I$ to $AD$ meet $AB$ and $AC$ at $K$ and $L$, respectively. Let the perpendicular from $T$ to $AD$ meet $AB$ and $AC$ at $M$ and $N$, respectively. Show that $|KM|\cdot |LN|=|BM|\cdot|CN|$.
1978 AMC 12/AHSME, 24
If the distinct non-zero numbers $x ( y - z),~ y(z - x),~ z(x - y )$ form a geometric progression with common ratio $r$, then $r$ satisfies the equation
$\textbf{(A) }r^2+r+1=0\qquad\textbf{(B) }r^2-r+1=0\qquad\textbf{(C) }r^4+r^2-1=0$
$\qquad\textbf{(D) }(r+1)^4+r=0\qquad \textbf{(E) }(r-1)^4+r=0$
2007 AIME Problems, 15
Four circles $\omega,$ $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$ with the same radius are drawn in the interior of triangle $ABC$ such that $\omega_{A}$ is tangent to sides $AB$ and $AC$, $\omega_{B}$ to $BC$ and $BA$, $\omega_{C}$ to $CA$ and $CB$, and $\omega$ is externally tangent to $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$. If the sides of triangle $ABC$ are $13,$ $14,$ and $15,$ the radius of $\omega$ can be represented in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
1984 IMO Longlists, 10
Assume that the bisecting plane of the dihedral angle at edge $AB$ of the tetrahedron $ABCD$ meets the edge $CD$ at point $E$. Denote by $S_1, S_2, S_3$, respectively the areas of the triangles $ABC, ABE$, and $ABD$. Prove that no tetrahedron exists for which $S_1, S_2, S_3$ (in this order) form an arithmetic or geometric progression.
1998 AMC 8, 13
What is the ratio of the area of the shaded square to the area of the large square? (The figure is drawn to scale)
[asy]
draw((0,0)--(0,4)--(4,4)--(4,0)--cycle);
draw((0,0)--(4,4));
draw((0,4)--(3,1)--(3,3));
draw((1,1)--(2,0)--(4,2));
fill((1,1)--(2,0)--(3,1)--(2,2)--cycle,black);[/asy]
$ \text{(A)}\ \frac{1}{6}\qquad\text{(B)}\ \frac{1}{7}\qquad\text{(C)}\ \frac{1}{8}\qquad\text{(D)}\ \frac{1}{12}\qquad\text{(E)}\ \frac{1}{16} $
2020 Chile National Olympiad, 3
Given the isosceles triangle $ABC$ with $| AB | = | AC | = 10$ and $| BC | = 15$. Let points $P$ in $BC$ and $Q$ in $AC$ chosen such that $| AQ | = | QP | = | P C |$. Calculate the ratio of areas of the triangles $(PQA): (ABC)$.
2022 Princeton University Math Competition, 14
Let $\vartriangle ABC$ be a triangle. Let $Q$ be a point in the interior of $\vartriangle ABC$, and let $X, Y,Z$ denote the feet of the altitudes from $Q$ to sides $BC$, $CA$, $AB$, respectively. Suppose that $BC = 15$, $\angle ABC = 60^o$, $BZ = 8$, $ZQ = 6$, and $\angle QCA = 30^o$. Let line $QX$ intersect the circumcircle of $\vartriangle XY Z$ at the point $W\ne X$. If the ratio $\frac{ WY}{WZ}$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$, find $p + q$.
1961 IMO Shortlist, 4
Consider triangle $P_1P_2P_3$ and a point $p$ within the triangle. Lines $P_1P, P_2P, P_3P$ intersect the opposite sides in points $Q_1, Q_2, Q_3$ respectively. Prove that, of the numbers \[ \dfrac{P_1P}{PQ_1}, \dfrac{P_2P}{PQ_2}, \dfrac{P_3P}{PQ_3} \]
at least one is $\leq 2$ and at least one is $\geq 2$
2005 National Olympiad First Round, 23
How many solutions does the equation system \[\dfrac{x-1}{xy-3}=\dfrac{3-x-y}{7-x^2-y^2} = \dfrac{y-2}{xy-4}\] have?
$
\textbf{(A)}\ 0
\qquad\textbf{(B)}\ 1
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ 4
$
Denmark (Mohr) - geometry, 1995.3
From the vertex $C$ in triangle $ABC$, draw a straight line that bisects the median from $A$. In what ratio does this line divide the segment $AB$?
[img]https://1.bp.blogspot.com/-SxWIQ12DIvs/XzcJv5xoV0I/AAAAAAAAMY4/Ezfe8bd7W-Mfp2Qi4qE_gppbh9Fzvb4XwCLcBGAsYHQ/s0/1995%2BMohr%2Bp3.png[/img]
2018 Rio de Janeiro Mathematical Olympiad, 1
Let $ABC$ be a triangle and $k < 1$ a positive real number. Let $A_1$, $B_1$, $C_1$ be points on the sides $BC$, $AC$, $AB$ such that $$\frac{A_1B}{BC} = \frac{B_1C}{AC} = \frac{C_1A}{AB} = k.$$
[b](a)[/b] Compute, in terms of $k$, the ratio between the areas of the triangles $A_1B_1C_1$ and $ABC$.
[b](b)[/b] Generally, for each $n \ge 1$, the triangle $A_{n+1}B_{n+1}C_{n+1}$ is built such that $A_{n+1}$, $B_{n+1}$, $C_{n+1}$ are points on the sides $B_nC_n$, $A_nC_n$ e $A_nB_n$ satisfying $$\frac{A_{n+1}B_n}{B_nC_n} = \frac{B_{n+1}C_n}{A_nC_n} = \frac{C_{n+1}A_n}{A_nB_n} = k.$$
Compute the values of $k$ such that the sum of the areas of every triangle $A_nB_nC_n$, for $n = 1, 2, 3, \dots$ is equal to $\dfrac{1}{3}$ of the area of $ABC$.
2004 Baltic Way, 7
Find all sets $X$ consisting of at least two positive integers such that for every two elements $m,n\in X$, where $n>m$, there exists an element $k\in X$ such that $n=mk^2$.
2015 Switzerland - Final Round, 1
Let $ABC$ be an acute-angled triangle with $AB \ne BC$ and radius $k$. Let $P$ and $Q$ be the points of intersection of $k$ with the internal bisector and the external bisector of $\angle CBA$ respectively. Let $D$ be the intersection of $AC$ and $PQ$. Find the ratio $AD: DC$.