Found problems: 1679
2001 Tournament Of Towns, 5
On the plane is a set of at least four points. If any one point from this set is removed, the resulting set has an axis of symmetry. Is it necessarily true that the whole set has an axis of symmetry?
2008 Postal Coaching, 2
Let $ABC$ be an equilateral triangle, and let $K, L,M$ be points respectively on $BC, CA, AB$ such that $BK/KC = CL/LA = AM/MB =\lambda $. Find all values of $\lambda$ such that the circle with $BC$ as a diameter completely covers the triangle bounded by the lines $AK,BL,CM$.
1992 AIME Problems, 13
Triangle $ABC$ has $AB=9$ and $BC: AC=40: 41$. What's the largest area that this triangle can have?
2014 Harvard-MIT Mathematics Tournament, 3
[4] Let $ABCDEF$ be a regular hexagon. Let $P$ be the circle inscribed in $\triangle{BDF}$. Find the ratio of the area of circle $P$ to the area of rectangle $ABDE$.
1961 AMC 12/AHSME, 23
Points $P$ and $Q$ are both in the line segment $AB$ and on the same side of its midpoint. $P$ divides $AB$ in the ratio $2:3$, and $Q$ divides $AB$ in the ratio $3:4$. If $PQ=2$, then the length of $AB$ is:
${{ \textbf{(A)}\ 60\qquad\textbf{(B)}\ 70\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 80}\qquad\textbf{(E)}\ 85} $
IV Soros Olympiad 1997 - 98 (Russia), 9.3
What is angle $B$ of triangle$ ABC$, if it is known that the altitudes drawn from $A$ and $C$ intersect inside the triangle and one of them is divided by of intersection point into equal parts, and the other one in the ratio of $2: 1$, counting from the vertex?
2017 Singapore Junior Math Olympiad, 1
A square is cut into several rectangles, none of which is a square, so that the sides of each rectangle are parallel to the sides of the square. For each rectangle with sides $a, b,a<b$, compute the ratio $a/b$. Prove that sum of these ratios is at least $1$.
2017 AMC 12/AHSME, 15
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB' = 3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC' = 3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA' = 3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?
$\textbf{(A) }9:1\qquad\textbf{(B) }16:1\qquad\textbf{(C) }25:1\qquad\textbf{(D) }36:1\qquad\textbf{(E) }37:1$
2002 AMC 10, 1
The ratio $ \frac{2^{2001}\cdot3^{2003}}{6^{2002}}$ is
$ \textbf{(A)}\ \frac{1}{6} \qquad
\textbf{(B)}\ \frac{1}{3} \qquad
\textbf{(C)}\ \frac{1}{2} \qquad
\textbf{(D)}\ \frac{2}{3} \qquad
\textbf{(E)}\ \frac{3}{2}$
2008 Ukraine Team Selection Test, 9
Given $ \triangle ABC$ with point $ D$ inside. Let $ A_0\equal{}AD\cap BC$, $ B_0\equal{}BD\cap AC$, $ C_0 \equal{}CD\cap AB$ and $ A_1$, $ B_1$, $ C_1$, $ A_2$, $ B_2$, $ C_2$ are midpoints of $ BC$, $ AC$, $ AB$, $ AD$, $ BD$, $ CD$ respectively. Two lines parallel to $ A_1A_2$ and $ C_1C_2$ and passes through point $ B_0$ intersects $ B_1B_2$ in points $ A_3$ and $ C_3$respectively. Prove that $ \frac{A_3B_1}{A_3B_2}\equal{}\frac{C_3B_1}{C_3B_2}$.
1974 AMC 12/AHSME, 16
A circle of radius $ r$ is inscribed in a right isosceles triangle, and a circle of radius $ R$ is circumscribed about the triangle. Then $ R/r$ equals
$ \textbf{(A)}\ 1\plus{}\sqrt2\qquad
\textbf{(B)}\ \frac{2\plus{}\sqrt2}2 \qquad
\textbf{(C)}\ \frac{\sqrt2\minus{}1}2 \qquad$
$ \textbf{(D)}\ \frac{1\plus{}\sqrt2}2 \qquad
\textbf{(E)}\ 2(2\minus{}\sqrt2)$
1968 AMC 12/AHSME, 24
A painting $18''\ \text{X}\ 24''$ is to be placed into a wooden frame with the longer dimension vertical. The wood at the top and bottom is twice as wide as the wood on the sides. If the frame area equals that of the painting itself, the ratio of the smaller to the larger dimension of the framed painting is:
$\textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 1:2 \qquad\textbf{(C)}\ 2:3 \qquad\textbf{(D)}\ 3:4 \qquad\textbf{(E)}\ 1:1$
2011 Albania Team Selection Test, 3
In the acute angle triangle $ABC$ the point $O$ is the center of the circumscribed circle and the lines $OA,OB,OC$ intersect sides $BC,CA,AB$ respectively in points $M,N,P$ such that $\angle NMP=90^o$.
[b](a)[/b] Find the ratios $\frac{\angle AMN}{\angle NMC}$,$\frac{\angle AMP}{\angle PMB}$.
[b](b)[/b] If any of the angles of the triangle $ABC$ is $60^o$, find the two other angles.
1966 AMC 12/AHSME, 32
Let $M$ be the midpoint of side $AB$ of the triangle $ABC$. Let$P$ be a point on $AB$ between $A$ and $M$, and let $MD$ be drawn parallel to $PC$ and intersecting $BC$ at $D$. If the ratio of the area of the triangle $BPD$ to that of triangle $ABC$ is denoted by $r$, then
$\text{(A)}\ \tfrac{1}{2}<r<1\text{ depending upon the position of }P \qquad\\
\text{(B)}\ r=\tfrac{1}{2}\text{ independent of the position of }P\qquad\\
\text{(C)}\ \tfrac{1}{2}\le r<1\text{ depending upon the position of }P \qquad\\
\text{(D)}\ \tfrac{1}{3}<r<\tfrac{2}{3}\text{ depending upon the position of }P \qquad\\
\text{(E)}\ r=\tfrac{1}{3} \text{ independent of the position of }P$
2009 AMC 10, 16
Points $ A$ and $ C$ lie on a circle centered at $ O$, each of $ \overline{BA}$ and $ \overline{BC}$ are tangent to the circle, and $ \triangle ABC$ is equilateral. The circle intersects $ \overline{BO}$ at $ D$. What is $ \frac {BD}{BO}$?
$ \textbf{(A)}\ \frac {\sqrt2}{3} \qquad \textbf{(B)}\ \frac {1}{2} \qquad \textbf{(C)}\ \frac {\sqrt3}{3} \qquad \textbf{(D)}\ \frac {\sqrt2}{2} \qquad \textbf{(E)}\ \frac {\sqrt3}{2}$
2002 Turkey Team Selection Test, 2
In a triangle $ABC$, the angle bisector of $\widehat{ABC}$ meets $[AC]$ at $D$, and the angle bisector of $\widehat{BCA}$ meets $[AB]$ at $E$. Let $X$ be the intersection of the lines $BD$ and $CE$ where $|BX|=\sqrt 3|XD|$ ve $|XE|=(\sqrt 3 - 1)|XC|$. Find the angles of triangle $ABC$.
1952 AMC 12/AHSME, 49
In the figure, $ \overline{CD}, \overline{AE}$ and $ \overline{BF}$ are one-third of their respective sides. It follows that $ \overline{AN_2}: \overline{N_2N_1}: \overline{N_1D} \equal{} 3: 3: 1$, and similarly for lines $ BE$ and $ CF.$ Then the area of triangle $ N_1N_2N_3$ is:
[asy]unitsize(27);
defaultpen(linewidth(.8pt)+fontsize(10pt));
pair A,B,C,D,E,F,X,Y,Z;
A=(3,3); B=(0,0); C=(6,0); D=(4,0); E=(4,2); F=(1,1);
draw(A--B--C--cycle);
draw(A--D); draw(B--E); draw(C--F);
X=intersectionpoint(A--D,C--F); Y=intersectionpoint(B--E,A--D); Z=intersectionpoint(B--E,C--F);
label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE);
label("$D$",D,S); label("$E$",E,NE); label("$F$",F,NW);
label("$N_1$",X,NE); label("$N_2$",Y,WNW); label("$N_3$",Z,S);[/asy]$ \textbf{(A)}\ \frac {1}{10} \triangle ABC \qquad\textbf{(B)}\ \frac {1}{9} \triangle ABC \qquad\textbf{(C)}\ \frac {1}{7} \triangle ABC \qquad\textbf{(D)}\ \frac {1}{6} \triangle ABC \qquad\textbf{(E)}\ \text{none of these}$
2007 F = Ma, 27
A space station consists of two living modules attached to a central hub on opposite sides of the hub by long corridors of equal length. Each living module contains $N$ astronauts of equal mass. The mass of the space station is negligible compared to the mass of the astronauts, and the size of the central hub and living modules is negligible compared to the length of the corridors. At the beginning of the day, the space station is rotating so that the astronauts feel as if they are in a gravitational field of strength $g$. Two astronauts, one from each module, climb into the central hub, and the remaining astronauts now feel a gravitational field of strength $g'$ . What is the ratio $g'/g$ in terms of $N$?[asy]
import roundedpath;
size(300);
path a = roundedpath((0,-0.3)--(4,-0.3)--(4,-1)--(5,-1)--(5,0),0.1);
draw(scale(+1,-1)*a);
draw(scale(+1,+1)*a);
draw(scale(-1,-1)*a);
draw(scale(-1,+1)*a);
filldraw(circle((0,0),1),white,black);
filldraw(box((-2,-0.27),(2,0.27)),white,white);
draw(arc((0,0),1.5,+35,+150),dashed,Arrow);
draw(arc((0,0),1.5,-150,-35),dashed,Arrow);[/asy]
$ \textbf{(A)}\ 2N/(N-1) $
$ \textbf{(B)}\ N/(N-1) $
$ \textbf{(C)}\ \sqrt{(N-1)/N} $
$ \textbf{(D)}\ \sqrt{N/(N-1)} $
$ \textbf{(E)}\ \text{none of the above} $
2010 Purple Comet Problems, 29
Square $ABCD$ is shown in the diagram below. Points $E$, $F$, and $G$ are on sides $\overline{AB}$, $\overline{BC}$ and $\overline{DA}$, respectively, so that lengths $\overline{BE}$, $\overline{BF}$, and $\overline{DG}$ are equal. Points $H$ and $I$ are the midpoints of segments $\overline{EF}$ and $\overline{CG}$, respectively. Segment $\overline{GJ}$ is the perpendicular bisector of segment $\overline{HI}$. The ratio of the areas of pentagon $AEHJG$ and quadrilateral $CIHF$ can be written as $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
draw((0,0)--(50,0)--(50,50)--(0,50)--cycle);
label("$A$",(0,50),NW);
label("$B$",(50,50),NE);
label("$C$",(50,0),SE);
label("$D$",(0,0),SW);
label("$E$",(0,100/3-1),W);
label("$F$",(100/3-1,0),S);
label("$G$",(20,50),N);
label("$H$",((100/3-1)/2,(100/3-1)/2),SW);
label("$I$",(35,25),NE);
label("$J$",(((100/3-1)/2+35)/2,((100/3-1)/2+25)/2),S);
draw((0,100/3-1)--(100/3-1,0));
draw((20,50)--(50,0));
draw((100/6-1/2,100/6-1/2)--(35,25));
draw((((100/3-1)/2+35)/2,((100/3-1)/2+25)/2)--(20,50));
[/asy]
2012 Sharygin Geometry Olympiad, 5
On side $AC$ of triangle $ABC$ an arbitrary point is selected $D$. The tangent in $D$ to the circumcircle of triangle $BDC$ meets $AB$ in point $C_{1}$; point $A_{1}$ is defined similarly. Prove that $A_{1}C_{1}\parallel AC$.
2001 Switzerland Team Selection Test, 3
In a convex pentagon every diagonal is parallel to one side. Show that the ratios between the lengths of diagonals and the sides parallel to them are equal and find their value.
2013 Argentina Cono Sur TST, 5
Let $ABC$ be an equilateral triangle and $D$ a point on side $AC$. Let $E$ be a point on $BC$ such that $DE \perp BC$, $F$ on $AB$ such that $EF \perp AB$, and $G$ on $AC$ such that $FG \perp AC$. Lines $FG$ and $DE$ intersect in $P$. If $M$ is the midpoint of $BC$, show that $BP$ bisects $AM$.
1991 AIME Problems, 7
Find $A^2$, where $A$ is the sum of the absolute values of all roots of the following equation: \begin{eqnarray*}x &=& \sqrt{19} + \frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{x}}}}}}}}}\end{eqnarray*}
2010 Postal Coaching, 1
Let $\gamma,\Gamma$ be two concentric circles with radii $r,R$ with $r<R$. Let $ABCD$ be a cyclic quadrilateral inscribed in $\gamma$. If $\overrightarrow{AB}$ denotes the Ray starting from $A$ and extending indefinitely in $B's$ direction then Let $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD} , \overrightarrow{DA}$ meet $\Gamma$ at the points $C_1,D_1,A_1,B_1$ respectively. Prove that
\[\frac{[A_1B_1C_1D_1]}{[ABCD]} \ge \frac{R^2}{r^2}\]
where $[.]$ denotes area.
1990 AMC 12/AHSME, 24
All students at Adams High School and at Baker High School take a certain exam. The average scores for boys, for girls, and for boys and girls combined, at Adams HS and Baker HS are shown in the table, as is the average for boys at the two schools combined. What is the average score for the girls at the two schools combined?
\[ \begin{tabular}{c c c c}
{} & \textbf{Adams} & \textbf{Baker} & \textbf{Adams and Baker} \\
\textbf{Boys:} & 71 & 81 & 79 \\
\textbf{Girls:} & 76 & 90 & ? \\
\textbf{Boys and Girls:} & 74 & 84 & \\
\end{tabular}
\]
$ \textbf{(A)}\ 81 \qquad\textbf{(B)}\ 82 \qquad\textbf{(C)}\ 83 \qquad\textbf{(D)}\ 84 \quad\textbf{(E)}\ 85 $