This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2011 AIME Problems, 8

In triangle $ABC$, $BC = 23$, $CA = 27$, and $AB = 30$. Points $V$ and $W$ are on $\overline{AC}$ with $V$ on $\overline{AW}$, points $X$ and $Y$ are on $\overline{BC}$ with $X$ on $\overline{CY}$, and points $Z$ and $U$ are on $\overline{AB}$ with $Z$ on $\overline{BU}$. In addition, the points are positioned so that $\overline{UV} \parallel \overline{BC}$, $\overline{WX} \parallel \overline{AB}$, and $\overline{YZ} \parallel \overline{CA}$. Right angle folds are then made along $\overline{UV}$, $\overline{WX}$, and $\overline{YZ}$. The resulting figure is placed on a level floor to make a table with triangular legs. Let $h$ be the maximum possible height of a table constructed from triangle $ABC$ whose top is parallel to the floor. Then $h$ can be written in the form $\tfrac{k \sqrt{m}}{n}$, where $k$ and $n$ are relatively prime positive integers and $m$ is a positive integer that is not divisible by the square of any prime. Find $k + m + n$. [asy] unitsize(1 cm); pair translate; pair[] A, B, C, U, V, W, X, Y, Z; A[0] = (1.5,2.8); B[0] = (3.2,0); C[0] = (0,0); U[0] = (0.69*A[0] + 0.31*B[0]); V[0] = (0.69*A[0] + 0.31*C[0]); W[0] = (0.69*C[0] + 0.31*A[0]); X[0] = (0.69*C[0] + 0.31*B[0]); Y[0] = (0.69*B[0] + 0.31*C[0]); Z[0] = (0.69*B[0] + 0.31*A[0]); translate = (7,0); A[1] = (1.3,1.1) + translate; B[1] = (2.4,-0.7) + translate; C[1] = (0.6,-0.7) + translate; U[1] = U[0] + translate; V[1] = V[0] + translate; W[1] = W[0] + translate; X[1] = X[0] + translate; Y[1] = Y[0] + translate; Z[1] = Z[0] + translate; draw (A[0]--B[0]--C[0]--cycle); draw (U[0]--V[0],dashed); draw (W[0]--X[0],dashed); draw (Y[0]--Z[0],dashed); draw (U[1]--V[1]--W[1]--X[1]--Y[1]--Z[1]--cycle); draw (U[1]--A[1]--V[1],dashed); draw (W[1]--C[1]--X[1]); draw (Y[1]--B[1]--Z[1]); dot("$A$",A[0],N); dot("$B$",B[0],SE); dot("$C$",C[0],SW); dot("$U$",U[0],NE); dot("$V$",V[0],NW); dot("$W$",W[0],NW); dot("$X$",X[0],S); dot("$Y$",Y[0],S); dot("$Z$",Z[0],NE); dot(A[1]); dot(B[1]); dot(C[1]); dot("$U$",U[1],NE); dot("$V$",V[1],NW); dot("$W$",W[1],NW); dot("$X$",X[1],dir(-70)); dot("$Y$",Y[1],dir(250)); dot("$Z$",Z[1],NE); [/asy]

2008 Thailand Mathematical Olympiad, 2

Let $AD$ be the common chord of two equal-sized circles $O_1$ and $O_2$. Let $B$ and $C$ be points on $O_1$ and $O_2$, respectively, so that $D$ lies on the segment $BC$. Assume that $AB = 15, AD = 13$ and $BC = 18$, what is the ratio between the inradii of $\vartriangle ABD$ and $\vartriangle ACD$?

2016 Israel National Olympiad, 6

Points $A_1,A_2,A_3,...,A_{12}$ are the vertices of a regular polygon in that order. The 12 diagonals $A_1A_6,A_2A_7,A_3A_8,...,A_{11}A_4,A_{12}A_5$ are marked, as in the picture below. Let $X$ be some point in the plane. From $X$, we draw perpendicular lines to all 12 marked diagonals. Let $B_1,B_2,B_3,...,B_{12}$ be the feet of the perpendiculars, so that $B_1$ lies on $A_1A_6$, $B_2$ lies on $A_2A_7$ and so on. Evaluate the ratio $\frac{XA_1+XA_2+\dots+XA_{12}}{B_1B_6+B_2B_7+\dots+B_{12}B_5}$. [img]https://i.imgur.com/DUuwFth.png[/img]

2022 Sharygin Geometry Olympiad, 8.6

Two circles meeting at points $A, B$ and a point $O$ lying outside them are given. Using a compass and a ruler construct a ray with origin $O$ meeting the first circle at point $C$ and the second one at point $D$ in such a way that the ratio $OC : OD$ be maximal.

2006 Turkey MO (2nd round), 2

There are $2006$ students and $14$ teachers in a school. Each student knows at least one teacher (knowing is a symmetric relation). Suppose that, for each pair of a student and a teacher who know each other, the ratio of the number of the students whom the teacher knows to that of the teachers whom the student knows is at least $t.$ Find the maximum possible value of $t.$

2007 International Zhautykov Olympiad, 3

Let $ABCDEF$ be a convex hexagon and it`s diagonals have one common point $M$. It is known that the circumcenters of triangles $MAB,MBC,MCD,MDE,MEF,MFA$ lie on a circle. Show that the quadrilaterals $ABDE,BCEF,CDFA$ have equal areas.

2014 AMC 12/AHSME, 19

A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone? [asy] real r=(3+sqrt(5))/2; real s=sqrt(r); real Brad=r; real brad=1; real Fht = 2*s; import graph3; import solids; currentprojection=orthographic(1,0,.2); currentlight=(10,10,5); revolution sph=sphere((0,0,Fht/2),Fht/2); //draw(surface(sph),green+white+opacity(0.5)); //triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));} triple f(pair t) { triple v0 = Brad*(cos(t.x),sin(t.x),0); triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht); return (v0 + t.y*(v1-v0)); } triple g(pair t) { return (t.y*cos(t.x),t.y*sin(t.x),0); } surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2); surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2); surface base = surface(g,(0,0),(2pi,Brad),80,2); draw(sback,rgb(0,1,0)); draw(sfront,rgb(.3,1,.3)); draw(base,rgb(.4,1,.4)); draw(surface(sph),rgb(.3,1,.3)); [/asy] $ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $

2009 China Team Selection Test, 2

Given an integer $ n\ge 2$, find the maximal constant $ \lambda (n)$ having the following property: if a sequence of real numbers $ a_{0},a_{1},a_{2},\cdots,a_{n}$ satisfies $ 0 \equal{} a_{0}\le a_{1}\le a_{2}\le \cdots\le a_{n},$ and $ a_{i}\ge\frac {1}{2}(a_{i \plus{} 1} \plus{} a_{i \minus{} 1}),i \equal{} 1,2,\cdots,n \minus{} 1,$ then $ (\sum_{i \equal{} 1}^n{ia_{i}})^2\ge \lambda (n)\sum_{i \equal{} 1}^n{a_{i}^2}.$

1995 AMC 8, 10

Tags: percent , ratio
A jacket and a shirt originally sold for $ \$80$ and $ \$40$, respectively. During a sale Chris bought the $ \$80$ jacket at a $40\%$ discount and the $ \$40$ shirt at a $55\%$ discount. The total amount saved was what percent of the total of the original prices? $\text{(A)}\ 45\% \qquad \text{(B)}\ 47\dfrac{1}{2}\% \qquad \text{(C)}\ 50\% \qquad \text{(D)}\ 79\dfrac{1}{6}\% \qquad \text{(E)}\ 95\%$.

1986 IMO Longlists, 31

Let $P$ and $Q$ be distinct points in the plane of a triangle $ABC$ such that $AP : AQ = BP : BQ = CP : CQ$. Prove that the line $PQ$ passes through the circumcenter of the triangle.

2005 Purple Comet Problems, 20

The summation $\sum_{k=1}^{360} \frac{1}{k \sqrt{k+1} + (k+1)\sqrt{k}}$ is the ratio of two relatively prime positive integers $m$ and $n$. Find $m + n$.

2014 National Olympiad First Round, 17

Let $E$ be the midpoint of side $[AB]$ of square $ABCD$. Let the circle through $B$ with center $A$ and segment $[EC]$ meet at $F$. What is $|EF|/|FC|$? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ \dfrac{3}{2} \qquad\textbf{(C)}\ \sqrt{5}-1 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \sqrt{3} $

2008 AMC 12/AHSME, 8

Tags: ratio
Points $ B$ and $ C$ lie on $ \overline{AD}$. The length of $ \overline{AB}$ is $ 4$ times the length of $ \overline{BD}$, and the length of $ \overline{AC}$ is $ 9$ times the length of $ \overline{CD}$. The length of $ \overline{BC}$ is what fraction of the length of $ \overline{AD}$? $ \textbf{(A)}\ \frac{1}{36} \qquad \textbf{(B)}\ \frac{1}{13} \qquad \textbf{(C)}\ \frac{1}{10} \qquad \textbf{(D)}\ \frac{5}{36} \qquad \textbf{(E)}\ \frac{1}{5}$

2009 Moldova Team Selection Test, 1

[color=darkblue]Let $ ABCD$ be a trapezoid with $ AB\parallel CD$. Exterior equilateral triangles $ ABE$ and $ CDF$ are constructed. Prove that lines $ AC$, $ BD$ and $ EF$ are concurrent.[/color]

1971 Kurschak Competition, 1

A straight line cuts the side $AB$ of the triangle $ABC$ at $C_1$, the side $AC$ at $B_1$ and the line $BC$ at $A_1$. $C_2$ is the reflection of $C_1$ in the midpoint of $AB$, and $B_2$ is the reflection of $B_1$ in the midpoint of $AC$. The lines $B_2C_2$ and $BC$ intersect at $A_2$. Prove that $$\frac{sen \, \, B_1A_1C}{sen\, \, C_2A_2B} = \frac{B_2C_2}{B_1C_1}$$ [img]https://cdn.artofproblemsolving.com/attachments/3/8/774da81495df0a0f7f2f660ae9f516cf70df06.png[/img]

2016 Federal Competition For Advanced Students, P1, 4

Determine all composite positive integers $n$ with the following property: If $1 = d_1 < d_2 < \cdots < d_k = n$ are all the positive divisors of $n$, then $$(d_2 - d_1) : (d_3 - d_2) : \cdots : (d_k - d_{k-1}) = 1:2: \cdots :(k-1)$$ (Walther Janous)

2013 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear. [i]Proposed by Michael Kural[/i]

2010 Indonesia TST, 4

Let $ ABC$ be an acute-angled triangle such that there exist points $ D,E,F$ on side $ BC,CA,AB$, respectively such that the inradii of triangle $ AEF,BDF,CDE$ are all equal to $ r_0$. If the inradii of triangle $ DEF$ and $ ABC$ are $ r$ and $ R$, respectively, prove that \[ r\plus{}r_0\equal{}R.\] [i]Soewono, Bandung[/i]

1999 India National Olympiad, 1

Let $ABC$ be an acute-angled triangle in which $D,E,F$ are points on $BC,CA,AB$ respectively such that $AD \perp BC$;$AE = BC$; and $CF$ bisects $\angle C$ internally, Suppose $CF$ meets $AD$ and $DE$ in $M$ and $N$ respectively. If $FM$$= 2$, $MN =1$, $NC=3$, find the perimeter of $\Delta ABC$.

2014 JHMMC 7 Contest, 6

Alex the Kat has written $61$ problems for a math contest, and there are a total of $187$ problems submitted. How many more problems does he need to write (and submit) before he has written half of the total problems?

2009 Tournament Of Towns, 2

Tags: ratio
(a) Find a polygon which can be cut by a straight line into two congruent parts so that one side of the polygon is divided in half while another side at a ratio of $1 : 2$. (b) Does there exist a convex polygon with this property?

1975 AMC 12/AHSME, 4

Tags: geometry , ratio
If the side of one square is the diagonal of a second square, what is the ratio of the area of the first square to the area of the second? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ \sqrt2 \qquad \textbf{(C)}\ 1/2 \qquad \textbf{(D)}\ 2\sqrt2 \qquad \textbf{(E)}\ 4$

2008 AMC 12/AHSME, 4

Tags: ratio , geometry
On circle $ O$, points $ C$ and $ D$ are on the same side of diameter $ \overline{AB}$, $ \angle AOC \equal{} 30^\circ$, and $ \angle DOB \equal{} 45^\circ$. What is the ratio of the area of the smaller sector $ COD$ to the area of the circle? [asy]unitsize(6mm); defaultpen(linewidth(0.7)+fontsize(8pt)); pair C = 3*dir (30); pair D = 3*dir (135); pair A = 3*dir (0); pair B = 3*dir(180); pair O = (0,0); draw (Circle ((0, 0), 3)); label ("$C$", C, NE); label ("$D$", D, NW); label ("$B$", B, W); label ("$A$", A, E); label ("$O$", O, S); label ("$45^\circ$", (-0.3,0.1), WNW); label ("$30^\circ$", (0.5,0.1), ENE); draw (A--B); draw (O--D); draw (O--C);[/asy]$ \textbf{(A)}\ \frac {2}{9} \qquad \textbf{(B)}\ \frac {1}{4} \qquad \textbf{(C)}\ \frac {5}{18} \qquad \textbf{(D)}\ \frac {7}{24} \qquad \textbf{(E)}\ \frac {3}{10}$

2000 APMO, 3

Let $ABC$ be a triangle. Let $M$ and $N$ be the points in which the median and the angle bisector, respectively, at $A$ meet the side $BC$. Let $Q$ and $P$ be the points in which the perpendicular at $N$ to $NA$ meets $MA$ and $BA$, respectively. And $O$ the point in which the perpendicular at $P$ to $BA$ meets $AN$ produced. Prove that $QO$ is perpendicular to $BC$.

2014 Iranian Geometry Olympiad (junior), P2

The inscribed circle of $\triangle ABC$ touches $BC, AC$ and $AB$ at $D,E$ and $F$ respectively. Denote the perpendicular foots from $F, E$ to $BC$ by $K, L$ respectively. Let the second intersection of these perpendiculars with the incircle be $M, N$ respectively. Show that $\frac{{{S}_{\triangle BMD}}}{{{S}_{\triangle CND}}}=\frac{DK}{DL}$ by Mahdi Etesami Fard