This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

2018 Hanoi Open Mathematics Competitions, 8

Tags: angle , square , geometry
Let $P$ be a point inside the square $ABCD$ such that $\angle PAC = \angle PCD = 17^o$ (see Figure 1). Calculate $\angle APB$? [img]https://cdn.artofproblemsolving.com/attachments/d/0/0b20ebee1fe28e9c5450d04685ac8537acda07.png[/img]

1998 Estonia National Olympiad, 5

From an $n\times n$ square divided into $n^2$ unit squares, one corner unit square is cut off. Find all positive integers $n$ for which it is possible to tile the remaining part of the square with $L$-trominos. [img]https://cdn.artofproblemsolving.com/attachments/0/4/d13e6e7016d943b867f44375a2205b10ccf552.png[/img]

2015 Estonia Team Selection Test, 2

A square-shaped pizza with side length $30$ cm is cut into pieces (not necessarily rectangular). All cuts are parallel to the sides, and the total length of the cuts is $240$ cm. Show that there is a piece whose area is at least $36$ cm$^2$

1972 Putnam, A4

Tags: ellipse , square
Show that a circle inscribed in a square has a larger perimeter than any other ellipse inscribed in the square.

2010 Sharygin Geometry Olympiad, 6

Let $E, F$ be the midpoints of sides $BC, CD$ of square $ABCD$. Lines $AE$ and $BF$ meet at point $P$. Prove that $\angle PDA = \angle AED$.

2006 Sharygin Geometry Olympiad, 7

The point $E$ is taken inside the square $ABCD$, the point $F$ is taken outside, so that the triangles $ABE$ and $BCF$ are congruent . Find the angles of the triangle $ABE$, if it is known that$EF$ is equal to the side of the square, and the angle $BFD$ is right.

2011 Argentina National Olympiad, 6

We have a square of side $1$ and a number $\ell$ such that $0 <\ell <\sqrt2$. Two players $A$ and $B$, in turn, draw in the square an open segment (without its two ends) of length $\ell $, starts A. Each segment after the first cannot have points in common with the previously drawn segments. He loses the player who cannot make his play. Determine if either player has a winning strategy.

2002 Dutch Mathematical Olympiad, 1

The sides of a $10$ by $10$ square $ABCD$ are reflective on the inside. A beam of light enters the square via the vertex $A$ and heads to the point $P$ on $CD$ with $CP = 3$ and $PD = 7$. In $P$ it naturally reflects on the $CD$ side. The light beam can only leave the square via one of the angular points $A, B, C$ or $D$. What is the distance that the light beam travels within the square before it leaves the square again? By which vertex does that happen?

2012 Danube Mathematical Competition, 1

Given a positive integer $n$, determine the maximum number of lattice points in the plane a square of side length $n +\frac{1}{2n+1}$ may cover.

2011 Saudi Arabia Pre-TST, 4

Tags: fixed , geometry , square
Points $A ,B ,C ,D$ lie on a line in this order. Draw parallel lines $a$ and $b$ through $A$ and $B$, respectively, and parallel lines $c$ and $d$ through $C$ and $D$, respectively, such that their points of intersection are vertices of a square. Prove that the side length of this square does not depend on the length of segment $BC$.

2020 Ukrainian Geometry Olympiad - April, 4

On the sides $AB$ and $AD$ of the square $ABCD$, the points $N$ and $P$ are selected respectively such that $NC=NP$. The point $Q$ is chosen on the segment $AN$ so that $\angle QPN = \angle NCB$. Prove that $2\angle BCQ = \angle AQP$.

2019 Puerto Rico Team Selection Test, 2

Let $ABCD$ be a square. Let $M$ and $K$ be points on segments $BC$ and $CD$ respectively, such that $MC = KD$. Let $ P$ be the intersection of the segments $MD$ and $BK$. Prove that $AP$ is perpendicular to $MK$.

2023 Yasinsky Geometry Olympiad, 3

Let $ABC$ be an acute triangle. Squares $AA_1A_2A_3$, $BB_1B_2B_3$ and $CC_1C_2C_3$ are located such that the lines $A_1A_2$, $B_1B_2$, $C_1C_2$ pass through the points $B$, $C$ and $A$ respectively and the lines $A_2A_3$, $B_2B_3$, $C_2C_3$ pass through the points $C$, $A$ and $B$ respectively. Prove that (a) the lines $AA_2$, $B_1B_2$ and $C_1C_3$ intersect at one point. (b) the lines $AA_2$, $BB_2$ and $CC_2$ intersect at one point. (Mykhailo Plotnikov) [img]https://cdn.artofproblemsolving.com/attachments/3/d/ad2fe12ae2c82d04b48f5e683b7d54e0764baf.png[/img]

2020 New Zealand MO, 2

Let $ABCD$ be a square and let $X$ be any point on side $BC$ between $B$ and $C$. Let $Y$ be the point on line $CD$ such that $BX = YD$ and $D$ is between $C$ and $Y$ . Prove that the midpoint of $XY$ lies on diagonal $BD$.

1975 Chisinau City MO, 106

Construct a square from four points, one on each side.

1998 Chile National Olympiad, 6

Given an equilateral triangle, cut it into four polygonal shapes so that, reassembled appropriately, these figures form a square.

2022 Yasinsky Geometry Olympiad, 5

Point $X$ is chosen on side $AD$ of square $ABCD$. The inscribed circle of triangle $ABX$ touches $AX$, $BX$, and $AB$ at points $N$, $K$, and $F$, respectively. Prove that the ray $NK$ passes through the center $O$ of the square $ABCD$. (Dmytro Shvetsov)

2015 BMT Spring, 9

Find the side length of the largest square that can be inscribed in the unit cube.

2001 Chile National Olympiad, 2

Prove that the only way to cover a square of side $1$ with a finite number of circles that do not overlap, it is with only one circle of radius greater than or equal to $\frac{1}{\sqrt2}$. Circles can occupy part of the outside of the square and be of different radii.

2020 Durer Math Competition Finals, 13

In triangle $ABC$ we inscribe a square such that one of the sides of the square lies on the side $AC$, and the other two vertices lie on sides $AB$ and $BC$. Furthermore we know that $AC = 5$, $BC = 4$ and $AB = 3$. This square cuts out three smaller triangles from $\vartriangle ABC$. Express the sum of reciprocals of the inradii of these three small triangles as a fraction $p/q$ in lowest terms (i.e. with $p$ and $q$ coprime). What is $p + q$?

2009 Junior Balkan Team Selection Tests - Romania, 4

To obtain a square $P$ of side length $2$ cm divided into $4$ unit squares it is sufficient to draw $3$ squares: $P$ and another $2$ unit squares with a common vertex, as shown below: [img]https://cdn.artofproblemsolving.com/attachments/1/d/827516518871ec8ff00a66424f06fda9812193.png[/img] Find the minimum number of squares sufficient to obtain a square.of side length $n$ cm divided into $n^2$ unit squares ($n \ge 3$ is an integer).

2002 Junior Balkan Team Selection Tests - Romania, 4

Let $ABCD$ be a parallelogram of center $O$. Points $M$ and $N$ are the midpoints of $BO$ and $CD$, respectively. Prove that if the triangles $ABC$ and $AMN$ are similar, then $ABCD$ is a square.

Estonia Open Junior - geometry, 2003.2.4

Tags: geometry , square , area
Consider the points $A_1$ and $A_2$ on the side $AB$ of the square $ABCD$ taken in such a way that $|AB| = 3 |AA_1| $ and $|AB| = 4 |A_2B|$, similarly consider points $B_1$ and $B_2, C_1$ and $C_2, D_1$ and $D_2$ respectively on the sides $BC$, $CD$ and $DA$. The intersection point of straight lines $D_2A_1$ and $A_2B_1$ is $E$, the intersection point of straight lines $A_2B_1$ and $B_2C_1$ is $F$, the intersection point of straight lines $B_2C_1$ and $C_2D_1$ is $G$ and the intersection point of straight lines $C_2D_1$ and $D_2A_1$ is $H$. Find the area of the square $EFGH$, knowing that the area of $ABCD$ is $1$.

2016 Saint Petersburg Mathematical Olympiad, 2

On a $300 \times 300$ board, several rooks are placed that beat the entire board. Within this case, each rook beats no more than one other rook. At what least $k$, it is possible to state that there is at least one rook in each $k\times k$ square ?

2002 All-Russian Olympiad Regional Round, 8.6

Each side of the convex quadrilateral was continued into both sides and on all eight extensions set aside equal segments. It turned out that the resulting $8$ points are the outer ends of the construction the given segments are different and lie on the same circle. Prove that the original quadrilateral is a square.