This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 405

2005 Taiwan TST Round 2, 2

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

2016 Belarus Team Selection Test, 1

Tags: triangle , geometry
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2020 AIME Problems, 1

Tags: geometry , triangle
In $\triangle ABC$ with $AB=AC$, point $D$ lies strictly between $A$ and $C$ on side $\overline{AC}$, and point $E$ lies strictly between $A$ and $B$ on side $\overline{AB}$ such that $AE=ED=DB=BC$. The degree measure of $\angle ABC$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2011 Indonesia TST, 3

Let $M$ be a point in the interior of triangle $ABC$. Let $A'$ lie on $BC$ with $MA'$ perpendicular to $BC$. Define $B'$ on $CA$ and $C'$ on $AB$ similarly. Define \[ p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}. \] Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu(ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu(ABC)$ maximal?

2013 AMC 10, 3

Tags: triangle , geometry
Square $ ABCD $ has side length $ 10 $. Point $ E $ is on $ \overline{BC} $, and the area of $ \bigtriangleup ABE $ is $ 40 $. What is $ BE $? $\textbf{(A)} \ 4 \qquad \textbf{(B)} \ 5 \qquad \textbf{(C)} \ 6 \qquad \textbf{(D)} \ 7 \qquad \textbf{(E)} \ 8 \qquad $ [asy] pair A,B,C,D,E; A=(0,0); B=(0,50); C=(50,50); D=(50,0); E = (30,50); draw(A--B); draw(B--E); draw(E--C); draw(C--D); draw(D--A); draw(A--E); dot(A); dot(B); dot(C); dot(D); dot(E); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,N); [/asy]

2004 Germany Team Selection Test, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2020 AMC 12/AHSME, 24

Tags: triangle , geometry
Suppose that $\triangle ABC$ is an equilateral triangle of side length $s$, with the property that there is a unique point $P$ inside the triangle such that $AP = 1$, $BP = \sqrt{3}$, and $CP = 2$. What is $s?$ $\textbf{(A) } 1 + \sqrt{2} \qquad \textbf{(B) } \sqrt{7} \qquad \textbf{(C) } \frac{8}{3} \qquad \textbf{(D) } \sqrt{5 + \sqrt{5}} \qquad \textbf{(E) } 2\sqrt{2}$

1999 IMO Shortlist, 1

Let ABC be a triangle and $M$ be an interior point. Prove that \[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]

2004 Germany Team Selection Test, 3

Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that \[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \] [i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$. Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$. [i]Proposed by Dirk Laurie, South Africa[/i]

2002 India IMO Training Camp, 11

Let $ABC$ be a triangle and $P$ an exterior point in the plane of the triangle. Suppose the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ (or extensions thereof) in $D$, $E$, $F$, respectively. Suppose further that the areas of triangles $PBD$, $PCE$, $PAF$ are all equal. Prove that each of these areas is equal to the area of triangle $ABC$ itself.

2019 AMC 10, 13

Tags: triangle , geometry
Let $\Delta ABC$ be an isosceles triangle with $BC = AC$ and $\angle ACB = 40^{\circ}$. Contruct the circle with diameter $\overline{BC}$, and let $D$ and $E$ be the other intersection points of the circle with the sides $\overline{AC}$ and $\overline{AB}$, respectively. Let $F$ be the intersection of the diagonals of the quadrilateral $BCDE$. What is the degree measure of $\angle BFC ?$ $\textbf{(A) } 90 \qquad\textbf{(B) } 100 \qquad\textbf{(C) } 105 \qquad\textbf{(D) } 110 \qquad\textbf{(E) } 120$

1998 Croatia National Olympiad, Problem 1

Let $a,b,c$ be the sides and $\alpha,\beta,\gamma$ be the corresponding angles of a triangle. Prove the equality $$\left(\frac bc+\frac cb\right)\cos\alpha+\left(\frac ca+\frac ac\right)\cos\beta+\left(\frac ab+\frac ba\right)\cos\gamma=3.$$

2022 Indonesia TST, G

Given an acute triangle $ABC$. with $H$ as its orthocenter, lines $\ell_1$ and $\ell_2$ go through $H$ and are perpendicular to each other. Line $\ell_1$ cuts $BC$ and the extension of $AB$ on $D$ and $Z$ respectively. Whereas line $\ell_2$ cuts $BC$ and the extension of $AC$ on $E$ and $X$ respectively. If the line through $D$ and parallel to $AC$ and the line through $E$ parallel to $AB$ intersects at $Y$, prove that $X,Y,Z$ are collinear.

1961 Czech and Slovak Olympiad III A, 4

Consider a unit square $ABCD$ and a (variable) equilateral triangle $XYZ$ such that $X, Z$ lie on rays $AB, DC,$ respectively, and $Y$ lies on segment $AD$. Compute the area of triangle $XYZ$ in terms of $x=AX$ and determine its maximum and minimum.

2015 China Team Selection Test, 4

Prove that : For each integer $n \ge 3$, there exists the positive integers $a_1<a_2< \cdots <a_n$ , such that for $ i=1,2,\cdots,n-2 $ , With $a_{i},a_{i+1},a_{i+2}$ may be formed as a triangle side length , and the area of the triangle is a positive integer.

1975 Czech and Slovak Olympiad III A, 5

Let a square $\mathbf P=P_1P_2P_3P_4$ be given in the plane. Determine the locus of all vertices $A$ of isosceles triangles $ABC,AB=BC$ such that the vertices $B,C$ are points of the square $\mathbf P.$

1970 Bulgaria National Olympiad, Problem 4

Tags: triangle , geometry
Let $\delta_0=\triangle A_0B_0C_0$ be a triangle. On each of the sides $B_0C_0$, $C_0A_0$, $A_0B_0$, there are constructed squares in the halfplane, not containing the respective vertex $A_0,B_0,C_0$ and $A_1,B_1,C_1$ are the centers of the constructed squares. If we use the triangle $\delta_1=\triangle A_1B_1C_1$ in the same way we may construct the triangle $\delta_2=\triangle A_2B_2C_2$; from $\delta_2=\triangle A_2B_2C_2$ we may construct $\delta_3=\triangle A_3B_3C_3$ and etc. Prove that: (a) segments $A_0A_1,B_0B_1,C_0C_1$ are respectively equal and perpendicular to $B_1C_1,C_1A_1,A_1B_1$; (b) vertices $A_1,B_1,C_1$ of the triangle $\delta_1$ lies respectively over the segments $A_0A_3,B_0B_3,C_0C_3$ (defined by the vertices of $\delta_0$ and $\delta_1$) and divide them in ratio $2:1$. [i]K. Dochev[/i]

2018 EGMO, 1

Let $ABC$ be a triangle with $CA=CB$ and $\angle{ACB}=120^\circ$, and let $M$ be the midpoint of $AB$. Let $P$ be a variable point of the circumcircle of $ABC$, and let $Q$ be the point on the segment $CP$ such that $QP = 2QC$. It is given that the line through $P$ and perpendicular to $AB$ intersects the line $MQ$ at a unique point $N$. Prove that there exists a fixed circle such that $N$ lies on this circle for all possible positions of $P$.

2008 Chile National Olympiad, 2

Let $ABC$ be right isosceles triangle with right angle in $A$. Given a point $P$ inside the triangle, denote by $a, b$ and $c$ the lengths of $PA, PB$ and $PC$, respectively. Prove that there is a triangle whose sides have a length of $a\sqrt2 , b$ and $c$.

1990 IMO Longlists, 5

Given the condition that there exist exactly $1990$ triangles $ABC$ with integral side-lengths satisfying the following conditions: (i) $\angle ABC =\frac 12 \angle BAC;$ (ii) $AC = b.$ Find the minimal value of $b.$

1967 IMO Shortlist, 6

A line $l$ is drawn through the intersection point $H$ of altitudes of acute-angle triangles. Prove that symmetric images $l_a, l_b, l_c$ of $l$ with respect to the sides $BC,CA,AB$ have one point in common, which lies on the circumcircle of $ABC.$

1984 IMO Longlists, 32

Angles of a given triangle $ABC$ are all smaller than $120^\circ$. Equilateral triangles $AFB, BDC$ and $CEA$ are constructed in the exterior of $ABC$. (a) Prove that the lines $AD, BE$, and $CF$ pass through one point $S.$ (b) Prove that $SD + SE + SF = 2(SA + SB + SC).$

2009 Singapore Senior Math Olympiad, 1

Given triangle $ ABC $ with points $ M $ and $ N $ are in the sides $ AB $ and $ AC $ respectively. If $ \dfrac{BM}{MA} +\dfrac{CN}{NA} = 1 $ , then prove that the centroid of $ ABC $ lies on $ MN $ .

1998 Slovenia National Olympiad, Problem 3

In a right-angled triangle $ABC$ with the hypotenuse $BC$, $D$ is the foot of the altitude from $A$. The line through the incenters of the triangles $ABD$ and $ADC$ intersects the legs of $\triangle ABC$ at $E$ and $F$. Prove that $A$ is the circumcenter of triangle $DEF$.

2021 ELMO Problems, 1

In $\triangle ABC$, points $P$ and $Q$ lie on sides $AB$ and $AC$, respectively, such that the circumcircle of $\triangle APQ$ is tangent to $BC$ at $D$. Let $E$ lie on side $BC$ such that $BD = EC$. Line $DP$ intersects the circumcircle of $\triangle CDQ$ again at $X$, and line $DQ$ intersects the circumcircle of $\triangle BDP$ again at $Y$. Prove that $D$, $E$, $X$, and $Y$ are concyclic.