Found problems: 405
Durer Math Competition CD Finals - geometry, 2010.D5
Prove that we can put in any arbitrary triangle with sidelengths $a,b,c$ such that $0\le a,b,c \le \sqrt2$ into a unit cube.
1974 Czech and Slovak Olympiad III A, 2
Let a triangle $ABC$ be given. For any point $X$ of the triangle denote $m(X)=\min\{XA,XB,XC\}.$ Find all points $X$ (of triangle $ABC$) such that $m(X)$ is maximal.
2019 Jozsef Wildt International Math Competition, W. 69
Denote $\overline{w_a}, \overline{w_b}, \overline{w_c}$ the external angle-bisectors in triangle $ABC$, prove that $$\sum \limits_{cyc} \frac{1}{w_a}\leq \sqrt{\frac{(s^2 - r^2 - 4Rr)(8R^2 - s^2 - r^2 - 2Rr)}{8s^2R^2r}}$$
1997 Brazil Team Selection Test, Problem 1
In an isosceles triangle $ABC~(AC=BC)$, let $O$ be its circumcenter, $D$ the midpoint of $AC$ and $E$ the centroid of $DBC$. Show that $OE$ is perpendicular to $BD$.
2010 Brazil Team Selection Test, 3
Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram.
Prove that $GR=GS$.
[i]Proposed by Hossein Karke Abadi, Iran[/i]
1985 IMO Longlists, 5
If possible, construct an equilateral triangle whose three vertices are on three given circles.
2007 Serbia National Math Olympiad, 1
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2004 Germany Team Selection Test, 2
Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$.
[i]Proposed by C.R. Pranesachar, India [/i]
1966 IMO Longlists, 19
Construct a triangle given the radii of the excircles.
2013 VTRMC, Problem 2
Let $ABC$ be a right-angled triangle with $\angle ABC=90^\circ$, and let $D$ be on $AB$ such that $AD=2DB$. What is the maximum possible value of $\angle ACD$?
2022 OlimphÃada, 2
Let $ABC$ be a triangle and $\omega$ its incircle. $\omega$ touches $AC,AB$ at $E,F$, respectively. Let $P$ be a point on $EF$. Let $\omega_1=(BFP), \omega_2=(CEP)$. The parallel line through $P$ to $BC$ intersects $\omega_1,\omega_2$ at $X,Y$, respectively. Show that $BX=CY$.
2011 IMO Shortlist, 5
Prove that for every positive integer $n,$ the set $\{2,3,4,\ldots,3n+1\}$ can be partitioned into $n$ triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.
[i]Proposed by Canada[/i]
2018 Hanoi Open Mathematics Competitions, 2
In triangle $ABC,\angle BAC = 60^o, AB = 3a$ and $AC = 4a, (a > 0)$. Let $M$ be point on the segment $AB$ such that $AM =\frac13 AB, N$ be point on the side $AC$ such that $AN =\frac12AC$. Let $I$ be midpoint of $MN$. Determine the length of $BI$.
A. $\frac{a\sqrt2}{19}$ B. $\frac{2a}{\sqrt{19}}$ C. $\frac{19a\sqrt{19}}{2}$ D. $\frac{19a}{\sqrt2}$ E. $\frac{a\sqrt{19}}{2}$
2015 Mediterranean Mathematical Olympiad, 3
In the Cartesian plane $\mathbb{R}^2,$ each triangle contains a Mediterranean point on its sides or in its interior, even if the triangle is degenerated into a segment or a point. The Mediterranean points have the following properties:
[b](i)[/b] If a triangle is symmetric with respect to a line which passes through the origin $(0,0)$, then the Mediterranean point lies on this line.
[b](ii)[/b] If the triangle $DEF$ contains the triangle $ABC$ and if the triangle $ABC$ contains the Mediterranean points $M$ of $DEF,$ then $M$ is the Mediterranean point of the triangle $ABC.$
Find all possible positions for the Mediterranean point of the triangle with vertices $(-3,5),\ (12,5),\ (3,11).$
1988 IMO Longlists, 22
In a triangle $ ABC,$ choose any points $ K \in BC, L \in AC, M \in AB, N \in LM, R \in MK$ and $ F \in KL.$ If $ E_1, E_2, E_3, E_4, E_5, E_6$ and $ E$ denote the areas of the triangles $ AMR, CKR, BKF, ALF, BNM, CLN$ and $ ABC$ respectively, show that
\[ E \geq 8 \cdot \sqrt [6]{E_1 E_2 E_3 E_4 E_5 E_6}.
\]
2020 Tuymaada Olympiad, 6
An isosceles triangle $ABC$ ($AB = BC$) is given. Circles $\omega_1$ and $\omega_2$ with centres $O_1$ and $O_2$ lie in the angle $ABC$ and touch the sides $AB$ and $CB$ at $A$ and $C$ respectively, and touch each other externally at point $X$. The side $AC$ meets the circles again at points $Y$ and $Z$. $O$ is the circumcenter of the triangle $XYZ$. Lines $O_2 O$ and $O_1 O$ intersect lines $AB$ and $BC$ at points $C_1$ and $A_1$ respectively. Prove that $B$ is the circumcentre of the triangle $A_1 OC_1$.
2000 Croatia National Olympiad, Problem 2
Two squares $ACXE$ and $CBDY$ are constructed in the exterior of an acute-angled triangle $ABC$. Prove that the intersection of the lines $AD$ and $BE$ lies on the altitude of the triangle from $C$.
2016 IMO, 1
Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.
1978 Bundeswettbewerb Mathematik, 4
In a triangle $ABC$, the points $A_1, B_1, C_1$ are symmetric to $A, B,C$ with respect to $B,C, A$, respectively. Given the points $A_1, B_1,C_1$ reconstruct the triangle $ABC$.
2003 Czech And Slovak Olympiad III A, 4
Let be given an obtuse angle $AKS$ in the plane. Construct a triangle $ABC$ such that $S$ is the midpoint of $BC$ and $K$ is the intersection point of $BC$ with the bisector of $\angle BAC$.
2001 IMO, 1
Consider an acute-angled triangle $ABC$. Let $P$ be the foot of the altitude of triangle $ABC$ issuing from the vertex $A$, and let $O$ be the circumcenter of triangle $ABC$. Assume that $\angle C \geq \angle B+30^{\circ}$. Prove that $\angle A+\angle COP < 90^{\circ}$.
2023 Romania JBMO TST, P2
Let $ABC$ be an acute-angled triangle with $BC > AB$, such that the points $A$, $H$, $I$ and $C$ are concyclic (where $H$ is the orthocenter and $I$ is the incenter of triangle $ABC$). The line $AC$ intersects the circumcircle of triangle $BHC$ at point $T$, and the line $BC$ intersects the circumcircle of triangle $AHC$ at point $P$. If the lines $PT$ and $HI$ are parallel, determine the measures of the angles of triangle $ABC$.
2011 Morocco TST, 3
For a given triangle $ ABC$, let $ X$ be a variable point on the line $ BC$ such that $ C$ lies between $ B$ and $ X$ and the incircles of the triangles $ ABX$ and $ ACX$ intersect at two distinct points $ P$ and $ Q.$ Prove that the line $ PQ$ passes through a point independent of $ X$.
2001 Moldova National Olympiad, Problem 4
In a triangle $ABC$, $BC=a$, $AC=b$, $\angle B=\beta$ and $\angle C=\gamma$. Prove that the bisector of the angle at $A$ is equal to the altitude from $B$ if and only if $b=a\cos\frac{\beta-\gamma}2$.
1982 IMO Shortlist, 17
The right triangles $ABC$ and $AB_1C_1$ are similar and have opposite orientation. The right angles are at $C$ and $C_1$, and we also have $ \angle CAB = \angle C_1AB_1$. Let $M$ be the point of intersection of the lines $BC_1$ and $B_1C$. Prove that if the lines $AM$ and $CC_1$ exist, they are perpendicular.