This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 Harvard-MIT Mathematics Tournament, 1

The volume of a cube (in cubic inches) plus three times the total length of its edges (in inches) is equal to twice its surface area (in square inches). How many inches long is its long diagonal?

1982 IMO, 3

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2008 Mathcenter Contest, 6

Find the total number of integer solutions of the equation $$x^5-y^2=4$$ [i](Erken)[/i]

Kvant 2023, M2764

Let $BE{}$ and $CF$ be heights in the acute-angled triangle $ABC{}$ and let $O{}$ be its circumcenter. The points $M{}$ and $N{}$ are selected on the side $BC{}$ so that $BM=CN.{}$ The line $BE{}$ intersects the circle $(MBF)$ a second time at $P{}$ and the line $CF{}$ intersects the circle $(NCE)$ a second time at $Q.{}$ Prove that the lines $PF, QE$ and $AO{}$ intersect at the same point. [i]Proposed by Luu Dong[/i]

2005 Today's Calculation Of Integral, 16

Calculate the following indefinite integrals. [1] $\int \sin (\ln x)dx$ [2] $\int \frac{x+\sin ^ 2 x}{x\sin ^ 2 x}dx$ [3] $\int \frac{x^3}{x^2+1}dx$ [4] $\int \frac{x^2}{\sqrt{2x-1}}dx$ [5] $\int \frac{x+\cos 2x +1}{x\cos ^ 2 x}dx$

2019 Thailand TSTST, 2

Let $\Omega$ be the inscribed circle of a triangle $\vartriangle ABC$. Let $D, E$ and $F$ be the tangency points of $\Omega$ and the sides $BC, CA$ and $AB$, respectively, and let $AD, BE$ and $CF$ intersect $\Omega$ at $K, L$ and $M$, respectively, such that $D, E, F, K, L$ and $M$ are all distinct. The tangent line of $\Omega$ at $K$ intersects $EF$ at $X$, the tangent line of $\Omega$ at $L$ intersects $DE$ at $Y$ , and the tangent line of $\Omega$ at M intersects $DF$ at $Z$. Prove that $X,Y$ and $Z$ are collinear.

2016 Sharygin Geometry Olympiad, P17

Let $D$ be an arbitrary point on side $BC$ of triangle $ABC$. Circles $\omega_1$ and $\omega_2$ pass through $A$ and $D$ in such a way that $BA$ touches $\omega_1$ and $CA$ touches $\omega_2$. Let $BX$ be the second tangent from $B$ to $\omega_1$, and $CY$ be the second tangent from $C$ to $\omega_2$. Prove that the circumcircle of triangle $XDY$ touches $BC$.

2012 Stanford Mathematics Tournament, 5

The quartic (4th-degree) polynomial P(x) satisfies $P(1)=0$ and attains its maximum value of $3$ at both $x=2$ and $x=3$. Compute $P(5)$.

2012-2013 SDML (High School), 1

Tags:
What is the largest two-digit integer for which the product of its digits is $17$ more than their sum?

2016 Argentina National Olympiad Level 2, 5

For each pair $a, \,b$ of coprime natural numbers, let $d_{a,\,b}$ be the greatest common divisor of $51a + b$ and $a + 51b$. Find the maximum possible value of $d_{a,\,b}$.

2020 USAMTS Problems, 5:

Let $n \geq 3$ be an integer. Let $f$ be a function from the set of all integers to itself with the following property: If the integers $a_1,a_2,\ldots,a_n$ form an arithmetic progression, then the numbers $$f(a_1),f(a_2),\ldots,f(a_n)$$ form an arithmetic progression (possibly constant) in some order. Find all values for $n$ such that the only functions $f$ with this property are the functions of the form $f(x)=cx+d$, where $c$ and $d$ are integers.

2005 India IMO Training Camp, 3

A merida path of order $2n$ is a lattice path in the first quadrant of $xy$- plane joining $(0,0)$ to $(2n,0)$ using three kinds of steps $U=(1,1)$, $D= (1,-1)$ and $L= (2,0)$, i.e. $U$ joins $x,y)$ to $(x+1,y+1)$ etc... An ascent in a merida path is a maximal string of consecutive steps of the form $U$. If $S(n,k)$ denotes the number of merdia paths of order $2n$ with exactly $k$ ascents, compute $S(n,1)$ and $S(n,n-1)$.

2001 AMC 12/AHSME, 13

The parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ and vertex $ (h,k)$ is reflected about the line $ y \equal{} k$. This results in the parabola with equation $ y \equal{} dx^2 \plus{} ex \plus{} f$. Which of the following equals $ a \plus{} b \plus{} c \plus{} d \plus{} e \plus{} f$? $ \textbf{(A)} \ 2b \qquad \textbf{(B)} \ 2c \qquad \textbf{(C)} \ 2a \plus{} 2b \qquad \textbf{(D)} \ 2h \qquad \textbf{(E)} \ 2k$

1988 IMO Longlists, 75

Let $S$ be an infinite set of integers containing zero, and such that the distances between successive number never exceed a given fixed number. Consider the following procedure: Given a set $X$ of integers we construct a new set consisting of all numbers $x \pm s,$ where $x$ belongs to $X$ and s belongs to $S.$ Starting from $S_0 = \{0\}$ we successively construct sets $S_1, S_2, S_3, \ldots$ using this procedure. Show that after a finite number of steps we do not obtain any new sets, i.e. $S_k = S_{k_0}$ for $k \geq k_0.$

2014 Taiwan TST Round 2, 5

Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $. We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.

2012 Denmark MO - Mohr Contest, 5

In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.

2016 South East Mathematical Olympiad, 2

Tags: inequalities
Let $n$ be positive integer,$x_1,x_2,\cdots,x_n$ be positive real numbers such that $x_1x_2\cdots x_n=1 $ . Prove that$$\sum\limits_{i = 1}^{n}x_i\sqrt{x^2_1+x^2_2+\cdots x^2_i}\ge\frac{n+1}{2}\sqrt{n}$$

2008 Iran Team Selection Test, 7

Let $ S$ be a set with $ n$ elements, and $ F$ be a family of subsets of $ S$ with $ 2^{n\minus{}1}$ elements, such that for each $ A,B,C\in F$, $ A\cap B\cap C$ is not empty. Prove that the intersection of all of the elements of $ F$ is not empty.

2000 Austria Beginners' Competition, 4

Let $ABCDEFG$ be half of a regular dodecagon . Let $P$ be the intersection of the lines $AB$ and $GF$, and let $Q$ be the intersection of the lines $AC$ and $GE$. Prove that $Q$ is the circumcenter of the triangle $AGP$.

OMMC POTM, 2022 1

The digits $2,3,4,5,6,7,8,9$ are written down in some order. When read in that order, the digits form an $8$-digit, base $10$ positive integer. if this integer is divisible by $44$, how many ways could the digits have been initially ordered? [i]Proposed by Evan Chang (squareman), USA[/i]

2016 Stars of Mathematics, 1

Find the minimum number of perfect cubes such that their sum is equal to $ 346^{346} . $

2024 Euler Olympiad, Round 2, 3

Consider a convex quadrilateral \(ABCD\) with \(AC > BD\). In the plane of this quadrilateral, points \(M\) and \(N\) are chosen such that triangles \(ABM\) and \(CDN\) are equilateral, and segments \(MD\) and \(NA\) intersect lines \(AB\) and \(CD\) respectively. Similarly, points \(P\) and \(Q\) are chosen such that triangles \(ADP\) and \(BCQ\) are equilateral, but here segments \(PB\) and \(QA\) do not intersect lines \(AD\) and \(BC\) respectively. Prove that \(MN = AC + BD\) if and only if \(PQ = AC - BD\). [i]Proposed by Zaza Meliqidze, Georgia [/i]

2011 LMT, 4

Tags:
What is the sum of the first $2011$ integers closest in value to $0,$ including $0$ itself?

2017 Serbia Team Selection Test, 2

Initally a pair $(x, y)$ is written on the board, such that exactly one of it's coordinates is odd. On such a pair we perform an operation to get pair $(\frac x 2, y+\frac x 2)$ if $2|x$ and $(x+\frac y 2, \frac y 2)$ if $2|y$. Prove that for every odd $n>1$ there is a even positive integer $b<n$ such that starting from the pair $(n, b)$ we will get the pair $(b, n)$ after finitely many operations.

1995 APMO, 4

Let $C$ be a circle with radius $R$ and centre $O$, and $S$ a fixed point in the interior of $C$. Let $AA'$ and $BB'$ be perpendicular chords through $S$. Consider the rectangles $SAMB$, $SBN'A'$, $SA'M'B'$, and $SB'NA$. Find the set of all points $M$, $N'$, $M'$, and $N$ when $A$ moves around the whole circle.