This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

Kyiv City MO 1984-93 - geometry, 1990.7.3

Tags: geometry , angle
Given a triangle with sides $a, b, c$ that satisfy $\frac{a}{b+c}=\frac{c}{a+b}$. Determine the angles of this triangle, if you know that one of them is equal to $120^0$.

Novosibirsk Oral Geo Oly IX, 2017.2

Tags: angle , geometry
You are given a convex quadrilateral $ABCD$. It is known that $\angle CAD = \angle DBA = 40^o$, $\angle CAB = 60^o$, $\angle CBD = 20^o$. Find the angle $\angle CDB $.

2021 Lotfi Zadeh Olympiad, 4

Tags: angle , polygon
Find the number of sequences of $0, 1$ with length $n$ satisfying both of the following properties: [list] [*] There exists a simple polygon such that its $i$-th angle is less than $180$ degrees if and only if the $i$-th element of the sequence is $1$. [*] There exists a convex polygon such that its $i$-th angle is less than $90$ degrees if and only if the $i$-th element of the sequence is $1$. [/list]

1990 Greece Junior Math Olympiad, 3

Tags: geometry , angle , regular
Let $A_1A_2A_3...A_{72}$ be a regurar $72$-gon with center $O$. Calculate an extenral angle of that polygon and the angles $\angle A_{45} OA_{46}$, $\angle A_{44} A_{45}A_{46}$. How many diagonals does this polygon have?

1995 Tournament Of Towns, (469) 3

Let $AK$, $BL$ and $CM$ be the angle bisectors of a triangle $ABC$, with $K$ on $BC$. Let $P$ and $Q$ be the points on the lines $BL$ and $CM$ respectively such that $AP = PK$ and $AQ = QK$. Prove that $\angle PAQ = 90^o -\frac12 \angle B AC.$ (I Sharygin)

2012 Oral Moscow Geometry Olympiad, 1

In trapezoid $ABCD$, the sides $AD$ and $BC$ are parallel, and $AB = BC = BD$. The height $BK$ intersects the diagonal $AC$ at $M$. Find $\angle CDM$.

Kyiv City MO Juniors 2003+ geometry, 2018.7.41

In the quadrilateral $ABCD$ point $E$ - the midpoint of the side $AB$, point $F$ - the midpoint of the side $BC$, point $G$ - the midpoint $AD$ . It turned out that the segment $GE$ is perpendicular to $AB$, and the segment $GF$ is perpendicular to the segment $BC$. Find the value of the angle $GCD$, if it is known that $\angle ADC = 70 {} ^ \circ$.

2019 Novosibirsk Oral Olympiad in Geometry, 3

Equal line segments are marked in triangle $ABC$. Find its angles. [img]https://cdn.artofproblemsolving.com/attachments/0/2/bcb756bba15ba57013f1b6c4cbe9cc74171543.png[/img]

1980 IMO, 3

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

2011 Saudi Arabia IMO TST, 2

Tags: geometry , angle , obtuse
Let $ABC$ be a non-isosceles triangle with circumcenter $O$, in­center $I$, and orthocenter $H$. Prove that angle $\angle OIH$ is obtuse.

2015 BMT Spring, 7

Tags: geometry , incircle , angle
In $ \vartriangle ABC$, $\angle B = 46^o$ and $\angle C = 48^o$ . A circle is inscribed in $ \vartriangle ABC$ and the points of tangency are connected to form $PQR$. What is the measure of the largest angle in $\vartriangle P QR$?

VII Soros Olympiad 2000 - 01, 9.8

Given a triangle $ABC$. On its sides $BC$ , $CA$ and $AB$ , the points $A_1$ , $B_1$ and $C_1$ are taken, respectively , such that $2 \angle B_1 A_1 C_1 + \angle BAC = 180^o$ , $2 \angle A_1 C_1 B_1 + \angle ACB = 180^o$ , $2 \angle C_1 B_1 A_1 + \angle CBA = 180^o$ . Find the locus of the centers of the circles circumscribed about the triangles $A_1 B_1 C_1$ (all possible such triangles are considered).

2003 Junior Balkan Team Selection Tests - Romania, 4

Let $E$ be the midpoint of the side $CD$ of a square $ABCD$. Consider the point $M$ inside the square such that $\angle MAB = \angle MBC = \angle BME = x$. Find the angle $x$.

2005 All-Russian Olympiad Regional Round, 10.1

The cosines of the angles of one triangle are respectively equal to the sines of the angles of the other triangle. Find the largest of these six angles of triangles.

2015 Junior Regional Olympiad - FBH, 1

Tags: geometry , angle
Find two angles which add to $180^{\circ}$ which difference is $1^{'}$

1983 IMO Longlists, 69

Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.

2016 Czech-Polish-Slovak Junior Match, 1

Let $ABC$ be a right-angled triangle with hypotenuse $AB$. Denote by $D$ the foot of the altitude from $C$. Let $Q, R$, and $P$ be the midpoints of the segments $AD, BD$, and $CD$, respectively. Prove that $\angle AP B + \angle QCR = 180^o$. Czech Republic

2015 Switzerland Team Selection Test, 3

Tags: geometry , angle , middle
Let $ABC$ be a triangle with $AB> AC$. Let $D$ be a point on $AB$ such that $DB = DC$ and $M$ the middle of $AC$. The parallel to $BC$ passing through $D$ intersects the line $BM$ in $K$. Show that $\angle KCD = \angle DAC$.

Novosibirsk Oral Geo Oly VII, 2021.4

Tags: angle
It is known about two triangles that for each of them the sum of the lengths of any two of its sides is equal to the sum of the lengths of any two sides of the other triangle. Are triangles necessarily congruent?

1996 Singapore Senior Math Olympiad, 2

Let $180^o < \theta_1 < \theta_2 <...< \theta_n = 360^o$. For $i = 1,2,..., n$, $P_i = (\cos \theta_i^o, \sin \theta_i^o)$ is a point on the circle $C$ with centre $(0,0)$ and radius $1$. Let $P$ be any point on the upper half of $C$. Find the coordinates of $P$ such that the sum of areas $[PP_1P_2] + [PP_2P_3] + ...+ [PP_{n-1}P_n]$ attains its maximum.

Kyiv City MO Juniors 2003+ geometry, 2004.8.7

In an isosceles triangle $ABC$ with base $AC$, on side $BC$ is selected point $K$ so that $\angle BAK = 24^o$. On the segment $AK$ the point $M$ is chosen so that $\angle ABM = 90^o$, $AM=2BK$. Find the values ​​of all angles of triangle $ABC$.

1997 Singapore Senior Math Olympiad, 2

Figure shows a semicircle with diameter $AD$. The chords $AC$ and $BD$ meet at $P$. $Q$ is the foot of the perpendicular from $P$ to $AD$. find $\angle BCQ$ in terms of $\theta$ and $\phi$ . [img]https://cdn.artofproblemsolving.com/attachments/a/2/2781050e842b2dd01b72d246187f4ed434ff69.png[/img]

2007 Junior Balkan Team Selection Tests - Moldova, 6

The lengths of the sides $a, b$ and $c$ of a right triangle satisfy the relations $a <b <c$, and $\alpha$ is the measure of the smallest angle of the triangle. For which real values $k$ the equation $ax^2 + bx + kc = 0$ has real solutions for any measure of the angle $\alpha$ not exceeding $18^o$

1990 All Soviet Union Mathematical Olympiad, 524

$A, B, C$ are adjacent vertices of a regular $2n$-gon and $D$ is the vertex opposite to $B$ (so that $BD$ passes through the center of the $2n$-gon). $X$ is a point on the side $AB$ and $Y$ is a point on the side $BC$ so that $XDY = \frac{\pi}{2n}$. Show that $DY$ bisects $\angle XYC$.

Novosibirsk Oral Geo Oly VIII, 2016.2

Tags: angle , geometry
Bisector of one angle of triangle $ABC$ is equal to the bisector of its external angle at the same vertex (see figure). Find the difference between the other two angles of the triangle. [img]https://cdn.artofproblemsolving.com/attachments/c/3/d2efeb65544c45a15acccab8db05c8314eb5f2.png[/img]