This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

Brazil L2 Finals (OBM) - geometry, 2001.1

A sheet of rectangular $ABCD$ paper, of area $1$, is folded along its diagonal $AC$ and then unfolded, then it is bent so that vertex $A$ coincides with vertex $C$ and then unfolded, leaving the crease $MN$, as shown below. a) Show that the quadrilateral $AMCN$ is a rhombus. b) If the diagonal $AC$ is twice the width $AD$, what is the area of the rhombus $AMCN$? [img]https://2.bp.blogspot.com/-TeQ0QKYGzOQ/Xp9lQcaLbsI/AAAAAAAAL2E/JLXwEIPSr4U79tATcYzmcJjK5bGA6_RqACK4BGAYYCw/s400/2001%2Baomb%2Bl2.png[/img]

2023 Novosibirsk Oral Olympiad in Geometry, 1

Tags: geometry , area
In the triangle $ABC$ on the sides $AB$ and $AC$, points $D$ and E are chosen, respectively. Can the segments $CD$ and $BE$ divide $ABC$ into four parts of the same area? [img]https://cdn.artofproblemsolving.com/attachments/1/c/3bbadab162b22530f1b254e744ecd068dea65e.png[/img]

1953 Moscow Mathematical Olympiad, 249

Let $a, b, c, d$ be the lengths of consecutive sides of a quadrilateral, and $S$ its area. Prove that $S \le \frac{ (a + b)(c + d)}{4}$

Denmark (Mohr) - geometry, 1996.1

In triangle $ABC$, angle $C$ is right and the two catheti are both length $1$. For one given the choice of the point $P$ on the cathetus $BC$, the point $Q$ on the hypotenuse and the point $R$ are plotted on the second cathetus so that $PQ$ is parallel to $AC$ and $QR$ is parallel to $BC$. Thereby the triangle is divided into three parts. Determine the locations of point $P$ for which the rectangular part has a larger area than each of the other two parts.

1999 Mexico National Olympiad, 3

A point $P$ is given inside a triangle $ABC$. Let $D,E,F$ be the midpoints of $AP,BP,CP$, and let $L,M,N$ be the intersection points of $ BF$ and $CE, AF$ and $CD, AE$ and $BD$, respectively. (a) Prove that the area of hexagon $DNELFM$ is equal to one third of the area of triangle $ABC$. (b) Prove that $DL,EM$, and $FN$ are concurrent.

1951 Moscow Mathematical Olympiad, 205

Among all orthogonal projections of a regular tetrahedron to all possible planes, find the projection of the greatest area.

2009 Postal Coaching, 2

Let $n \ge 4$ be an integer. Find the maximum value of the area of a $n$-gon which is inscribed in the circle of radius $1$ and has two perpendicular diagonals.

2015 Iran Geometry Olympiad, 4

In rectangle $ABCD$, the points $M,N,P, Q$ lie on $AB$, $BC$, $CD$, $DA$ respectively such that the area of triangles $AQM$, $BMN$, $CNP$, $DPQ$ are equal. Prove that the quadrilateral $MNPQ$ is parallelogram. by Mahdi Etesami Fard

2000 Singapore Senior Math Olympiad, 1

In $\vartriangle ABC$, the points $D, E$ and $F$ lie on $AB, BC$ and $CA$ respectively. The line segments $AE, BF$ and $CD$ meet at the point $G$. Suppose that the area of each of $\vartriangle BGD, \vartriangle ECG$ and $\vartriangle GFA$ is $1$ cm$^2$. Prove that the area of each of $\vartriangle BEG, \vartriangle GCF$ and $\vartriangle ADG$ is also $1$ cm$^2$. [img]https://cdn.artofproblemsolving.com/attachments/e/7/ec090135bd2e47a9681d767bb984797d87218c.png[/img]

1988 All Soviet Union Mathematical Olympiad, 464

$ABCD$ is a convex quadrilateral. The midpoints of the diagonals and the midpoints of $AB$ and $CD$ form another convex quadrilateral $Q$. The midpoints of the diagonals and the midpoints of $BC$ and $CA$ form a third convex quadrilateral $Q'$. The areas of $Q$ and $Q'$ are equal. Show that either $AC$ or $BD$ divides $ABCD$ into two parts of equal area.

1994 Argentina National Olympiad, 4

Tags: rectangle , area , geometry
A rectangle is divided into $9$ small rectangles if by parallel lines to its sides, as shown in the figure. [img]https://cdn.artofproblemsolving.com/attachments/e/d/1fd545862a3c7950249ec54a631c74e59fb9ed.png[/img] The four numbers written indicate the areas of the four corresponding rectangles. Prove that the total area of the rectangle is greater than or equal to $90$.

2012 May Olympiad, 3

Tags: geometry , paper , area
From a paper quadrilateral like the one in the figure, you have to cut out a new quadrilateral whose area is equal to half the area of the original quadrilateral.You can only bend one or more times and cut by some of the lines of the folds. Describe the folds and cuts and justify that the area is half. [img]https://2.bp.blogspot.com/-btvafZuTvlk/XNY8nba0BmI/AAAAAAAAKLo/nm4c21A1hAIK3PKleEwt6F9cd6zv4XffwCK4BGAYYCw/s400/may%2B2012%2Bl1.png[/img]

2017 BMT Spring, 13

$4$ equilateral triangles of side length $1$ are drawn on the interior of a unit square, each one of which shares a side with one of the $4$ sides of the unit square. What is the common area enclosed by all $4$ equilateral triangles?

2010 Oral Moscow Geometry Olympiad, 3

On the sides $AB$ and $BC$ of triangle $ABC$, points $M$ and $K$ are taken, respectively, so that $S_{KMC} + S_{KAC}=S_{ABC}$. Prove that all such lines $MK$ pass through one point.

2001 Nordic, 4

Let ${ABCDEF}$ be a convex hexagon, in which each of the diagonals ${AD, BE}$ , and ${CF}$ divides the hexagon into two quadrilaterals of equal area. Show that ${AD, BE}$ , and ${CF}$ are concurrent.

2010 Balkan MO Shortlist, G3

The incircle of a triangle $A_0B_0C_0$ touches the sides $B_0C_0,C_0A_0,A_0B_0$ at the points $A,B,C$ respectively, and the incircle of the triangle $ABC$ with incenter $ I$ touches the sides $BC,CA, AB$ at the points $A_1, B_1,C_1$, respectively. Let $\sigma(ABC)$ and $\sigma(A_1B_1C)$ be the areas of the triangles $ABC$ and $A_1B_1C$ respectively. Show that if $\sigma(ABC) = 2 \sigma(A_1B_1C)$ , then the lines $AA_0, BB_0,IC_1$ pass through a common point .

2004 Federal Competition For Advanced Students, P2, 3

A trapezoid $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle $k$. Let $k_a$ and $k_c$ respectively be the circles with diameters $AB$ and $CD$. Compute the area of the region which is inside the circle $k$, but outside the circles $k_a$ and $k_c$.

1993 Bundeswettbewerb Mathematik, 4

Given is a triangle $ABC$ with side lengths $a, b, c$ ($a = \overline{BC}$, $b = \overline{CA}$, $c = \overline{AB}$) and area $F$. The side $AB$ is extended beyond $A$ by a and beyond $B$ by $b$. Correspondingly, $BC$ is extended beyond $B$ and $C$ by $b$ and $c$, respectively. Eventually $CA$ is extended beyond $C$ and $A$ by $c$ and $a$, respectively. Connecting the outer endpoints of the extensions , a hexagon if formed with area $G$. Prove that $\frac{G}{F}>13$.

Denmark (Mohr) - geometry, 2017.3

Tags: geometry , area , arc
The figure shows an arc $\ell$ on the unit circle and two regions $A$ and $B$. Prove that the area of $A$ plus the area of $B$ equals the length of $\ell$. [img]https://1.bp.blogspot.com/-SYoSrFowZ30/XzRz0ygiOVI/AAAAAAAAMUs/0FCduUoxKGwq0gSR-b3dtb3SvDjZ89x_ACLcBGAsYHQ/s0/2017%2BMohr%2Bp3.png[/img]

2012 Dutch BxMO/EGMO TST, 4

Let $ABCD$ a convex quadrilateral (this means that all interior angles are smaller than $180^o$), such that there exist a point $M$ on line segment $AB$ and a point $N$ on line segment $BC$ having the property that $AN$ cuts the quadrilateral in two parts of equal area, and such that the same property holds for $CM$. Prove that $MN$ cuts the diagonal $BD$ in two segments of equal length.

2011 District Olympiad, 3

Let $ABCA'B'C'$ a right triangular prism with the bases equilateral triangles. A plane $\alpha$ containing point $A$ intersects the rays $BB'$ and $CC'$ at points E and $F$, so that $S_ {ABE} + S_{ACF} = S_{AEF}$. Determine the measure of the angle formed by the plane $(AEF)$ with the plane $(BCC')$.

1985 Greece National Olympiad, 1

Inside triangle $ABC$ consider random point $O$. Prove that: $$E_A \overrightarrow{OA}+E_B \overrightarrow{OB}+E_C\overrightarrow{OC}=\overrightarrow{O}$$ where $E_A,E_B,E_C$ the areas of triangle $BOC, COB, AOB$ respectively

Estonia Open Senior - geometry, 1995.1.3

We call a tetrahedron a "trirectangular " if it has a vertex (we call this is called a "right-angled" vertex) in which the planes of the three sides of the tetrahedron intersect at right angles. Prove the "three-dimensional Pythagorean theorem": The square of the area of the opposite face of the "right-angled" vertex of the ""trirectangular " tetrahedron is equal to the sum of the squares of the areas of three other sides of the tetrahedron .

2020-21 KVS IOQM India, 24

Two circles $S_1$ and $S_2$, of radii $6$ units and $3$ units respectively, are tangent to each other, externally. Let $AC$ and $BD$ be their direct common tangents with $A$ and $B$ on $S_1$, and $C$ and $D$ on $S_2$. Find the area of quadrilateral $ABDC$ to the nearest Integer.

1987 IMO Shortlist, 13

Is it possible to put $1987$ points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a non-degenerate triangle with rational area? [i](IMO Problem 5)[/i] [i]Proposed by Germany, DR[/i]