This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 116

Indonesia Regional MO OSP SMA - geometry, 2010.1

Given triangle $ABC$. Suppose $P$ and $P_1$ are points on $BC, Q$ lies on $CA, R$ lies on $AB$, such that $$\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP_1}{P_1B}$$ Let $G$ be the centroid of triangle $ABC$ and $K = AP_1 \cap RQ$. Prove that points $P,G$, and $K$ are collinear.

1958 Polish MO Finals, 2

Each side of a convex quadrilateral $ ABCD $ is divided into three equal parts; a straight line is drawn through the dividing points of sides $ AB $ and $ AD $ that lie closer to vertex $ A $, and similarly for vertices $ B $, $ C $, $ D $. Prove that the center of gravity of the quadrilateral formed by the drawn lines coincides with the center of gravity of quadrilateral $ ABCD $.

Champions Tournament Seniors - geometry, 2000.4

Let $G$ be the point of intersection of the medians in the triangle $ABC$. Let us denote $A_1, B_1, C_1$ the second points of intersection of lines $AG, BG, CG$ with the circle circumscribed around the triangle. Prove that $AG + BG + CG \le A_1C + B_1C + C_1C$. (Yasinsky V.A.)

2012 Tournament of Towns, 6

(a) A point $A$ is marked inside a circle. Two perpendicular lines drawn through $A$ intersect the circle at four points. Prove that the centre of mass of these four points does not depend on the choice of the lines. (b) A regular $2n$-gon ($n \ge 2$) with centre $A$ is drawn inside a circle (A does not necessarily coincide with the centre of the circle). The rays going from $A$ to the vertices of the $2n$-gon mark $2n$ points on the circle. Then the $2n$-gon is rotated about $A$. The rays going from $A$ to the new locations of vertices mark new $2n$ points on the circle. Let $O$ and $N$ be the centres of gravity of old and new points respectively. Prove that $O = N$.

2021 Dutch IMO TST, 2

Let $ABC $be a right triangle with $\angle C = 90^o$ and let $D$ be the foot of the altitude from $C$. Let $E$ be the centroid of triangle $ACD$ and let $F$ be the centroid of triangle $BCD$. The point $P$ satisfies $\angle CEP = 90^o$ and $|CP| = |AP|$, while point $Q$ satisfies $\angle CFQ = 90^o$ and $|CQ| = |BQ|$. Prove that $PQ$ passes through the centroid of triangle $ABC$.

2021 Yasinsky Geometry Olympiad, 4

$K$ is an arbitrary point inside the acute-angled triangle $ABC$, in which $\angle A = 30^o$. $F$ and $N$ are the points of intersection of the medians in the triangles $AKC$ and $AKB$, respectively . It is known that $FN = q$. Find the radius of the circle circumscribed around the triangle $ABC$. (Grigory Filippovsky)

VII Soros Olympiad 2000 - 01, 10.4

An acute-angled triangle is inscribed in a circle of radius $R$. The distance between the center of the circle and the point of intersection of the medians of the triangle is $d$. Find the radius of a circle inscribed in a triangle whose vertices are the feet of the altitudes of this triangle.

1995 Singapore MO Open, 2

Let $A_1A_2A_3$ be a triangle and $M$ an interior point. The straight lines $MA_1, MA_2, MA_3$ intersect the opposite sides at the points $B_1, B_2, B_3$ respectively (see Fig.). Show that if the areas of triangles $A_2B_1M, A_3B_2M$ and $A_1B_3M$ are equal, then $M$ coincides with the centroid of triangle $A_1A_2A_3$. [img]https://cdn.artofproblemsolving.com/attachments/1/7/b29bdbb1f2b103be1f3cb2650b3bfff352024a.png[/img]

2004 Oral Moscow Geometry Olympiad, 4

In triangle $ABC$, $M$ is the intersection point of the medians, $O$ is the center of the inscribed circle. Prove that if the line $OM$ is parallel to the side $BC$, then the point $O$ is equidistant from the sides $AB$ and $AC$.

Ukrainian TYM Qualifying - geometry, 2016.14

Using only a compass and a ruler, reconstruct triangle $ABC$ given the following three points: point $M$ the intersection of its medians, point $I$ is the center of its inscribed circle and the point $Q_a$ is touch point of the inscribed circle to side $BC$.

2005 Sharygin Geometry Olympiad, 5

There are two parallel lines $p_1$ and $p_2$. Points $A$ and $B$ lie on $p_1$, and $C$ on $p_2$. We will move the segment $BC$ parallel to itself and consider all the triangles $AB'C '$ thus obtained. Find the locus of the points in these triangles: a) points of intersection of heights, b) the intersection points of the medians, c) the centers of the circumscribed circles.

2012 District Olympiad, 3

Let $ABC$ be an acute triangle. Consider the points $M, N \in (BC), Q \in (AB), P \in (AC)$ such that the $MNPQ$ is a rectangle. Prove that if the center of the rectangle $MNPQ$ coincides with the center of gravity of the triangle $ABC$, then $AB = AC = 3AP$

2019 Yasinsky Geometry Olympiad, p2

An isosceles triangle $ABC$ ($AB = AC$) with an incircle of radius $r$ is given. We know that the point $M$ of the intersection of the medians of the triangle $ABC$ lies on this circle. Find the distance from the vertex $A$ to the point of intersection of the bisectrix of the triangle $ABC$. (Grigory Filippovsky)

STEMS 2023 Math Cat A, 1

If in triangle $ABC$ , $AC$=$15$, $BC$=$13$ and $IG||AB$ where $I$ is the incentre and $G$ is the centroid , what is the area of triangle $ABC$ ?

2019 Abels Math Contest (Norwegian MO) Final, 4

The diagonals of a convex quadrilateral $ABCD$ intersect at $E$. The triangles $ABE, BCE, CDE$ and $DAE$ have centroids $K,L,M$ and $N$, and orthocentres $Q,R,S$ and $T$. Show that the quadrilaterals $QRST$ and $LMNK$ are similar.

2024 Austrian MO National Competition, 4

Let $ABC$ be an obtuse triangle with orthocenter $H$ and centroid $S$. Let $D$, $E$ and $F$ be the midpoints of segments $BC$, $AC$, $AB$, respectively. Show that the circumcircle of triangle $ABC$, the circumcircle of triangle $DEF$ and the circle with diameter $HS$ have two distinct points in common. [i](Josef Greilhuber)[/i]

1966 IMO Shortlist, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

2005 Sharygin Geometry Olympiad, 22

Perpendiculars at their centers of gravity (points of intersection of medians) are restored to the faces of the tetrahedron. Prove that the projections of the three perpendiculars to the fourth face intersect at one point.

1982 Bulgaria National Olympiad, Problem 6

Find the locus of centroids of equilateral triangles whose vertices lie on sides of a given square $ABCD$.

1966 IMO Longlists, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

2005 Sharygin Geometry Olympiad, 16

We took a non-equilateral acute-angled triangle and marked $4$ wonderful points in it: the centers of the inscribed and circumscribed circles, the center of gravity (the point of intersection of the medians) and the intersection point of altitudes. Then the triangle itself was erased. It turned out that it was impossible to establish which of the centers corresponds to each of the marked points. Find the angles of the triangle

1978 Germany Team Selection Test, 1

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

2001 Kazakhstan National Olympiad, 2

In the acute triangle $ ABC $, $ L $, $ H $ and $ M $ are the intersection points of bisectors, altitudes and medians, respectively, and $ O $ is the center of the circumscribed circle. Denote by $ X $, $ Y $ and $ Z $ the intersection points of $ AL $, $ BL $ and $ CL $ with a circle, respectively. Let $ N $ be a point on the line $ OL $ such that the lines $ MN $ and $ HL $ are parallel. Prove that $ N $ is the intersection point of the medians of $ XYZ $.

2019 Czech-Polish-Slovak Junior Match, 2

Let $ABC$ be a triangle with centroid $T$. Denote by $M$ the midpoint of $BC$. Let $D$ be a point on the ray opposite to the ray $BA$ such that $AB = BD$. Similarly, let $E$ be a point on the ray opposite to the ray $CA$ such that $AC = CE$. The segments $T D$ and $T E$ intersect the side $BC$ in $P$ and $Q$, respectively. Show that the points $P, Q$ and $M$ split the segment $BC$ into four parts of equal length.

2021 Irish Math Olympiad, 10

Let $P_{1}, P_{2}, \ldots, P_{2021}$ be 2021 points in the quarter plane $\{(x, y): x \geq 0, y \geq 0\}$. The centroid of these 2021 points lies at the point $(1,1)$. Show that there are two distinct points $P_{i}, P_{j}$ such that the distance from $P_{i}$ to $P_{j}$ is no more than $\sqrt{2} / 20$.