This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 45

2010 German National Olympiad, 1

Given two circles $k$ and $l$ which intersect at two points. One of their common tangents touches $k$ at point $K$, while the other common tangent touches $l$ at $L.$ Let $A$ and $B$ be the intersections of the line $KL$ with the circles $k$ and $l$, respectively. Prove that $\overline{AK} = \overline{BL}.$

2008 Danube Mathematical Competition, 2

In a triangle $ABC$ let $A_1$ be the midpoint of side $BC$. Draw circles with centers $A, A1$ and radii $AA_1, BC$ respectively and let $A'A''$ be their common chord. Similarly denote the segments $B'B''$ and $C'C''$. Show that lines $A'A'', B'B'''$ and $C'C''$ are concurrent.

2018 Regional Competition For Advanced Students, 2

Let $k$ be a circle with radius $r$ and $AB$ a chord of $k$ such that $AB > r$. Furthermore, let $S$ be the point on the chord $AB$ satisfying $AS = r$. The perpendicular bisector of $BS$ intersects $k$ in the points $C$ and $D$. The line through $D$ and $S$ intersects $k$ for a second time in point $E$. Show that the triangle $CSE$ is equilateral. [i]Proposed by Stefan Leopoldseder[/i]

2011 Sharygin Geometry Olympiad, 4

Given the circle of radius $1$ and several its chords with the sum of lengths $1$. Prove that one can be inscribe a regular hexagon into that circle so that its sides don’t intersect those chords.

1986 China Team Selection Test, 4

Mark $4 \cdot k$ points in a circle and number them arbitrarily with numbers from $1$ to $4 \cdot k$. The chords cannot share common endpoints, also, the endpoints of these chords should be among the $4 \cdot k$ points. [b]i.[/b] Prove that $2 \cdot k$ pairwisely non-intersecting chords can be drawn for each of whom its endpoints differ in at most $3 \cdot k - 1$. [b]ii.[/b] Prove that the $3 \cdot k - 1$ cannot be improved.

2018 JBMO Shortlist, G6

Let $XY$ be a chord of a circle $\Omega$, with center $O$, which is not a diameter. Let $P, Q$ be two distinct points inside the segment $XY$, where $Q$ lies between $P$ and $X$. Let $\ell$ the perpendicular line drawn from $P$ to the diameter which passes through $Q$. Let $M$ be the intersection point of $\ell$ and $\Omega$, which is closer to $P$. Prove that $$ MP \cdot XY \ge 2 \cdot QX \cdot PY$$

2005 Sharygin Geometry Olympiad, 1

The chords $AC$ and $BD$ of the circle intersect at point $P$. The perpendiculars to $AC$ and $BD$ at points $C$ and $D$, respectively, intersect at point $Q$. Prove that the lines $AB$ and $PQ$ are perpendicular.

2017 Yasinsky Geometry Olympiad, 3

In a circle, let $AB$ and $BC$ be chords , with $AB =\sqrt3, BC =3\sqrt3, \angle ABC =60^o$. Find the length of the circle chord that divides angle $ \angle ABC$ in half.

1987 Austrian-Polish Competition, 1

Three pairwise orthogonal chords of a sphere $S$ are drawn through a given point $P$ inside $S$. Prove that the sum of the squares of their lengths does not depend on their directions.

2005 Sharygin Geometry Olympiad, 3

Given a circle and a point $K$ inside it. An arbitrary circle equal to the given one and passing through the point $K$ has a common chord with the given circle. Find the geometric locus of the midpoints of these chords.

2005 Paraguay Mathematical Olympiad, 5

Given a chord $PQ$ of a circle and $M$ the midpoint of the chord, let $AB$ and $CD$ be two chords that pass through $M$. $AC$ and $BD$ are drawn until $PQ$ is intersected at points $X$ and $Y$ respectively. Show that $X$ and $Y$ are equidistant from $M$.

1949-56 Chisinau City MO, 31

Find the locus of the points that are the midpoints of the chords of the secant to the given circle and passing through a given point.

Kyiv City MO Juniors 2003+ geometry, 2009.89.5

A chord $AB$ is drawn in the circle, on which the point $P$ is selected in such a way that $AP = 2PB$. The chord $DE$ is perpendicular to the chord $AB $ and passes through the point $P$. Prove that the midpoint of the segment $AP$ is the orthocener of the triangle $AED$.

2000 Tournament Of Towns, 2

The chords $AC$ and $BD$ of a, circle with centre $O$ intersect at the point $K$. The circumcentres of triangles $AKB$ and $CKD$ are $M$ and $N$ respectively. Prove that $OM = KN$. (A Zaslavsky )

2004 Estonia National Olympiad, 1

Inside a circle, point $K$ is taken such that the ray drawn from $K$ through the centre $O$ of the circle and the chord perpendicular to this ray passing through $K$ divide the circle into three pieces with equal area. Let $L$ be one of the endpoints of the chord mentioned. Does the inequality $\angle KOL < 75^o$ hold?

1986 China Team Selection Test, 4

Mark $4 \cdot k$ points in a circle and number them arbitrarily with numbers from $1$ to $4 \cdot k$. The chords cannot share common endpoints, also, the endpoints of these chords should be among the $4 \cdot k$ points. [b]i.[/b] Prove that $2 \cdot k$ pairwisely non-intersecting chords can be drawn for each of whom its endpoints differ in at most $3 \cdot k - 1$. [b]ii.[/b] Prove that the $3 \cdot k - 1$ cannot be improved.

2013 Bosnia And Herzegovina - Regional Olympiad, 2

Tags: chord , circles , geometry
In circle with radius $10$, point $M$ is on chord $PQ$ such that $PM=5$ and $MQ=10$. Through point $M$ we draw chords $AB$ and $CD$, and points $X$ and $Y$ are intersection points of chords $AD$ and $BC$ with chord $PQ$ (see picture), respectively. If $XM=3$ find $MY$ [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYy9kLzBiMmFmM2ViOGVmOTlmZDA5NGY2ZWY4MjM1YWI0ZDZjNjJlNzA1LnBuZw==&rn=Z2VvbWV0cmlqYS5wbmc=[/img]

2011 Sharygin Geometry Olympiad, 21

On a circle with diameter $AC$, let $B$ be an arbitrary point distinct from $A$ and $C$. Points $M, N$ are the midpoints of chords $AB, BC$, and points $P, Q$ are the midpoints of smaller arcs restricted by these chords. Lines $AQ$ and $BC$ meet at point $K$, and lines $CP$ and $AB$ meet at point $L$. Prove that lines $MQ, NP$ and $KL$ concur.

2010 Greece JBMO TST, 3

Given an acute and scalene triangle $ABC$ with $AB<AC$ and random line $(e)$ that passes throuh the center of the circumscribed circles $c(O,R)$. Line $(e)$, intersects sides $BC,AC,AB$ at points $A_1,B_1,C_1$ respectively (point $C_1$ lies on the extension of $AB$ towards $B$). Perpendicular from $A$ on line $(e)$ and $AA_1$ intersect circumscribed circle $c(O,R)$ at points $M$ and $A_2$ respectively. Prove that a) points $O,A_1,A_2, M$ are consyclic b) if $(c_2)$ is the circumcircle of triangle $(OBC_1)$ and $(c_3)$ is the circumcircle of triangle $(OCB_1)$, then circles $(c_1),(c_2)$ and $(c_3)$ have a common chord

2018 India PRMO, 8

Tags: geometry , chord , angle
Let $AB$ be a chord of a circle with centre $O$. Let $C$ be a point on the circle such that $\angle ABC =30^o$ and $O$ lies inside the triangle $ABC$. Let $D$ be a point on $AB$ such that $\angle DCO = \angle OCB = 20^o$. Find the measure of $\angle CDO$ in degrees.

2010 NZMOC Camp Selection Problems, 2

Tags: geometry , chord , square
$AB$ is a chord of length $6$ in a circle of radius $5$ and centre $O$. A square is inscribed in the sector $OAB$ with two vertices on the circumference and two sides parallel to $ AB$. Find the area of the square.

1941 Moscow Mathematical Olympiad, 074

Tags: locus , chord , geometry
A point $P$ lies outside a circle. Consider all possible lines drawn through $P$ so that they intersect the circle. Find the locus of the midpoints of the chords — segments the circle intercepts on these lines.

2005 Sharygin Geometry Olympiad, 10.3

Two parallel chords $AB$ and $CD$ are drawn in a circle with center $O$. Circles with diameters $AB$ and $CD$ intersect at point $P$. Prove that the midpoint of the segment $OP$ is equidistant from lines $AB$ and $CD$.

1994 Italy TST, 1

Given a circle $\gamma$ and a point $P$ inside it, find the maximum and minimum value of the sum of the lengths of two perpendicular chords of $\gamma$ passing through $P$.

2005 Sharygin Geometry Olympiad, 11.4

In the triangle $ABC , \angle A = \alpha, BC = a$. The inscribed circle touches the lines $AB$ and $AC$ at points $M$ and $P$. Find the length of the chord cut by the line $MP$ in a circle with diameter $BC$.