This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2005 Germany Team Selection Test, 3

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

1992 IMO Longlists, 50

Let $N$ be a point inside the triangle $ABC$. Through the midpoints of the segments $AN, BN$, and $CN$ the lines parallel to the opposite sides of $\triangle ABC$ are constructed. Let $AN, BN$, and $CN$ be the intersection points of these lines. If $N$ is the orthocenter of the triangle $ABC$, prove that the nine-point circles of $\triangle ABC$ and $\triangle A_NB_NC_N$ coincide. [hide="Remark."]Remark. The statement of the original problem was that the nine-point circles of the triangles $A_NB_NC_N$ and $A_MB_MC_M$ coincide, where $N$ and $M$ are the orthocenter and the centroid of $ABC$. This statement is false.[/hide]

1996 Rioplatense Mathematical Olympiad, Level 3, 4

Tags: geometry , locus , circles
Let $S$ be the circle of center $O$ and radius $R$, and let $A, A'$ be two diametrically opposite points in $S$. Let $P$ be the midpoint of $OA'$ and $\ell$ a line passing through $P$, different from $AA '$ and from the perpendicular on $AA '$. Let $B$ and $C$ be the intersection points of $\ell$ with $S$ and let $M$ be the midpoint of $BC$. a) Let $H$ be the foot of the altitude from $A$ in the triangle $ABC$. Let $D$ be the intersection point of the line $A'M$ with $AH$. Determine the locus of point $D$ while $\ell$ varies . b) Line $AM$ intersects $OD$ at $I$. Prove that $2 OI = ID$ and determine the locus of point $I$ while $\ell$ varies .

2006 Sharygin Geometry Olympiad, 6

a) Given a segment $AB$ with a point $C$ inside it, which is the chord of a circle of radius $R$. Inscribe in the formed segment a circle tangent to point $C$ and to the circle of radius $R$. b) Given a segment $AB$ with a point $C$ inside it, which is the point of tangency of a circle of radius $r$. Draw through $A$ and $B$ a circle tangent to a circle of radius $r$.

1967 IMO Shortlist, 6

On the circle with center 0 and radius 1 the point $A_0$ is fixed and points $A_1, A_2, \ldots, A_{999}, A_{1000}$ are distributed in such a way that the angle $\angle A_00A_k = k$ (in radians). Cut the circle at points $A_0, A_1, \ldots, A_{1000}.$ How many arcs with different lengths are obtained. ?

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.

1966 IMO Shortlist, 38

Two concentric circles have radii $R$ and $r$ respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between $\frac 32 \cdot \frac{\sqrt R +\sqrt r }{\sqrt R -\sqrt r } -1$ and $\frac{63}{20} \cdot \frac{R+r}{R-r}.$

2011 IFYM, Sozopol, 4

Tags: circles , geometry
Let $A=\{P_1,P_2,…,P_{2011}\}$ be a set of points that lie in a circle $K(P_1,1)$. With $x_k$ we denote the distance between $P_k$ and the closest to it point from $A$. Prove that: $\sum_{i=1}^{2011} x_i^2 \leq \frac{9}{4}$.

2005 Sharygin Geometry Olympiad, 10.3

Two parallel chords $AB$ and $CD$ are drawn in a circle with center $O$. Circles with diameters $AB$ and $CD$ intersect at point $P$. Prove that the midpoint of the segment $OP$ is equidistant from lines $AB$ and $CD$.

1994 Italy TST, 1

Given a circle $\gamma$ and a point $P$ inside it, find the maximum and minimum value of the sum of the lengths of two perpendicular chords of $\gamma$ passing through $P$.

1966 IMO Shortlist, 15

Given four points $A,$ $B,$ $C,$ $D$ on a circle such that $AB$ is a diameter and $CD$ is not a diameter. Show that the line joining the point of intersection of the tangents to the circle at the points $C$ and $D$ with the point of intersection of the lines $AC$ and $BD$ is perpendicular to the line $AB.$

2014 Cuba MO, 3

Tags: circles , geometry
Let $\Gamma_1$ and $\Gamma_2$ be the circles with diameters $AP$ and $AQ$. Let $T$ be another point of intersection of the circles $\Gamma_1$ and $\Gamma_2$. Let $Q_1$ be another point of intersection of the circle $\Gamma_1$ and the line $AQ$, and $P_1$ the other point of intersection of the circle $\Gamma_2$ and the line $AP$. The circle $\Gamma_3$ passes through the points $T$, $P$ and $P_1$ and the circle $\Gamma_4$ passes through the points $T$, $Q$ and $Q_1$. Prove that the line containing the common chord of the circles $\Gamma_3$ and $\Gamma_4$ passes through$A$.

1948 Moscow Mathematical Olympiad, 153

* What is the radius of the largest possible circle inscribed into a cube with side $a$?

1997 Croatia National Olympiad, Problem 2

Tags: circles , geometry , locus
Consider a circle $k$ and a point $K$ in the plane. For any two distinct points $P$ and $Q$ on $k$, denote by $k'$ the circle through $P,Q$ and $K$. The tangent to $k'$ at $K$ meets the line $PQ$ at point $M$. Describe the locus of the points $M$ when $P$ and $Q$ assume all possible positions.

Swiss NMO - geometry, 2006.5

A circle $k_1$ lies within a second circle $k_2$ and touches it at point $A$. A line through $A$ intersects $k_1$ again in $B$ and $k_2$ in $C$. The tangent to $k_1$ through $B$ intersects $k_2$ at points $D$ and $E$. The tangents at $k_1$ passing through $C$ intersects $k_1$ in points $F$ and $G$. Prove that $D, E, F$ and $G$ lie on a circle.

1978 Chisinau City MO, 166

It is known that at least one coordinate of the center $(x_0, y_0)$ of the circle $(x -x_0)^2+ (y -y_0)^2 = R^2$ is irrational. Prove that on the circle itself there are at most two points with rational coordinates.

2006 Irish Math Olympiad, 5

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2019 Saudi Arabia Pre-TST + Training Tests, 2.3

Let $ABC$ be a triangle with $A',B',C'$ are midpoints of $BC,CA,AB$ respectively. The circle $(\omega_A)$ of center $A$ has a big enough radius cuts $B'C'$ at $X_1,X_2$. Define circles $(\omega_B), (\omega_C)$ with $Y_1, Y_2,Z_1,Z_2$ similarly. Suppose that these circles have the same radius, prove that $X_1,X_2, Y_1, Y_2,Z_1,Z_2$ are concyclic.

Geometry Mathley 2011-12, 1.4

Given are three circles $(O_1), (O_2), (O_3)$, pairwise intersecting each other, that is, every single circle meets the other two circles at two distinct points. Let $(X_1)$ be the circle externally tangent to $(O_1)$ and internally tangent to the circles $(O_2), (O_3),$ circles $(X_2), (X_3)$ are defined in the same manner. Let $(Y_1)$ be the circle internally tangent to $(O_1)$ and externally tangent to the circles $(O_2), (O_3)$, the circles $(Y_2), (Y_3)$ are defined in the same way. Let $(Z_1), (Z_2)$ be two circles internally tangent to all three circles $(O_1), (O_2), (O_3)$. Prove that the four lines $X_1Y_1, X_2Y_2, X_3Y_3, Z_1Z_2$ are concurrent. Nguyễn Văn Linh

2015 Latvia Baltic Way TST, 16

Points $X$ , $Y$, $Z$ lie on a line $k$ in this order. Let $\omega_1$, $\omega_2$, $\omega_3$ be three circles of diameters $XZ$, $XY$ , $YZ$ , respectively. Line $\ell$ passing through point $Y$ intersects $\omega_1$ at points $A$ and $D$, $\omega_2$ at $B$ and $\omega_3$ at $C$ in such manner that points $A, B, Y, X, D$ lie on $\ell$ in this order. Prove that $AB =CD$.

2018 Argentina National Olympiad, 6

Let $ABCD$ be a parallelogram. An interior circle of the $ABCD$ is tangent to the lines $AB$ and $AD$ and intersects the diagonal $BD$ at $E$ and $F$. Prove that exists a circle that passes through $E$ and $F$ and is tangent to the lines $CB$ and $CD$.

2023 AMC 10, 15

Tags: circles , geometry
An even number of circles are nested, starting with a radius of $1$ and increasing by $1$ each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius $2$ but outside the circle of radius $1.$ An example showing $8$ circles is displayed below. What is the least number of circles needed to make the total shaded area at least $2023\pi$?

2007 Dutch Mathematical Olympiad, 1

Consider the equilateral triangle $ABC$ with $|BC| = |CA| = |AB| = 1$. On the extension of side $BC$, we define points $A_1$ (on the same side as B) and $A_2$ (on the same side as C) such that $|A_1B| = |BC| = |CA_2| = 1$. Similarly, we define $B_1$ and $B_2$ on the extension of side $CA$ such that $|B_1C| = |CA| =|AB_2| = 1$, and $C_1$ and $C_2$ on the extension of side $AB$ such that $|C_1A| = |AB| = |BC_2| = 1$. Now the circumcentre of 4ABC is also the centre of the circle that passes through the points $A_1,B_2,C_1,A_2,B_1$ and $C_2$. Calculate the radius of the circle through $A_1,B_2,C_1,A_2,B_1$ and $C_2$. [asy] unitsize(1.5 cm); pair[] A, B, C; A[0] = (0,0); B[0] = (1,0); C[0] = dir(60); A[1] = B[0] + dir(-60); A[2] = C[0] + dir(120); B[1] = C[0] + dir(60); B[2] = A[0] + dir(240); C[1] = A[0] + (-1,0); C[2] = B[0] + (1,0); draw(A[1]--A[2]); draw(B[1]--B[2]); draw(C[1]--C[2]); draw(circumcircle(A[2],B[1],C[2])); dot("$A$", A[0], SE); dot("$A_1$", A[1], SE); dot("$A_2$", A[2], NW); dot("$B$", B[0], SW); dot("$B_1$", B[1], NE); dot("$B_2$", B[2], SW); dot("$C$", C[0], N); dot("$C_1$", C[1], W); dot("$C_2$", C[2], E); [/asy]

2014 Peru Iberoamerican Team Selection Test, P1

Circles $C_1$ and $C_2$ intersect at different points $A$ and $B$. The straight lines tangents to $C_1$ that pass through $A$ and $B$ intersect at $T$. Let $M$ be a point on $C_1$ that is out of $C_2$. The $MT$ line intersects $C_1$ at $C$ again, the $MA$ line intersects again to $C_2$ in $K$ and the line $AC$ intersects again to the circumference $C_2$ in $L$. Prove that the $MC$ line passes through the midpoint of the $KL$ segment.

2008 Flanders Math Olympiad, 4

Tags: square , circles , area , geometry
A square with sides $1$ and four circles of radius $1$ considered each having a vertex of have the square as the center. Find area of the shaded part (see figure). [img]https://cdn.artofproblemsolving.com/attachments/b/6/6e28d94094d69bac13c2702853ac2c906a80a1.png[/img]