This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2025 Olympic Revenge, 2

Let $ABC$ be a scalene triangle with $\Omega_A, \Omega_B,\Omega_C$ its excircles. $T_A$ is the intersection point of the external tangent (different of $AB$) of $\Omega_A,\Omega_B$ with the external tangent (different of $AC$) of $\Omega_A, \Omega_C$. Define $T_B, T_C$ in a similar way. If $I_A, I_B, I_C$ are the excenters of $ABC$, prove that the circumcircles of $AI_AT_A, BI_BT_B, CI_CT_C$ concur in exactly two points.

2023 Yasinsky Geometry Olympiad, 6

In the triangle $ABC$ with sides $AC = b$ and $AB = c$, the extension of the bisector of angle $A$ intersects it's circumcircle at point with $W$. Circle $\omega$ with center at $W$ and radius $WA$ intersects lines $AC$ and $AB$ at points $D$ and $F$, respectively. Calculate the lengths of segments $CD$ and $BF$. (Evgeny Svistunov) [img]https://cdn.artofproblemsolving.com/attachments/7/e/3b340afc4b94649992eb2dccda50ca8f3f7d1d.png[/img]

2014 Contests, 3

Let $ABC$ be a triangle and let $P$ be a point on $BC$. Points $M$ and $N$ lie on $AB$ and $AC$, respectively such that $MN$ is not parallel to $BC$ and $AMP N$ is a parallelogram. Line $MN$ meets the circumcircle of $ABC$ at $R$ and $S$. Prove that the circumcircle of triangle $RP S$ is tangent to $BC$.

2012 AMC 12/AHSME, 16

Circle $C_1$ has its center $O$ lying on circle $C_2$. The two circles meet at $X$ and $Y$. Point $Z$ in the exterior of $C_1$ lies on circle $C_2$ and $XZ=13$, $OZ=11$, and $YZ=7$. What is the radius of circle $C_1$? $ \textbf{(A)}\ 5\qquad\textbf{(B)}\ \sqrt{26}\qquad\textbf{(C)}\ 3\sqrt{3}\qquad\textbf{(D)}\ 2\sqrt{7}\qquad\textbf{(E)}\ \sqrt{30} $

2005 All-Russian Olympiad, 2

We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.

1992 China National Olympiad, 1

A convex quadrilateral $ABCD$ is inscribed in a circle with center $O$. The diagonals $AC$, $BD$ of $ABCD$ meet at $P$. Circumcircles of $\triangle ABP$ and $\triangle CDP$ meet at $P$ and $Q$ ($O,P,Q$ are pairwise distinct). Show that $\angle OQP=90^{\circ}$.

1985 All Soviet Union Mathematical Olympiad, 408

The $[A_0A_5]$ diameter divides a circumference with the $O$ centre onto two hemicircumferences. One of them is divided onto five equal arcs $A_0A_1, A_1A_2, A_2A_3, A_3A_4, A_4A_5$. The $(A_1A_4)$ line crosses $(OA_2)$ and $(OA_3)$ lines in $M$ and $N$ points. Prove that $(|A_2A_3| + |MN|)$ equals to the circumference radius.

1996 AIME Problems, 6

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2007 Federal Competition For Advanced Students, Part 2, 3

The triangle $ ABC$ with the circumcircle $ k(U,r)$ is given. On the extension of the radii $ UA$ a point $ P$ is chosen. The reflection of the line $ PB$ on the line $ BA$ is called $ g$. Likewise the reflection of the line $ PC$ on the line $ CA$ is called $ h$. The intersection of $ g$ and $ h$ is called $ Q$. Find the geometric location of all possible intersections $ Q$, while $ P$ passes through the extension of the radii $ UA$.

2010 Kazakhstan National Olympiad, 1

Triangle $ABC$ is given. Circle $ \omega $ passes through $B$, touch $AC$ in $D$ and intersect sides $AB$ and $BC$ at $P$ and $Q$ respectively. Line $PQ$ intersect $BD$ and $AC$ at $M$ and $N$ respectively. Prove that $ \omega $, circumcircle of $DMN$ and circle, touching $PQ$ in $M$ and passes through B, intersects in one point.

2019 Oral Moscow Geometry Olympiad, 3

Restore the acute triangle $ABC$ given the vertex $A$, the foot of the altitude drawn from the vertex $B$ and the center of the circle circumscribed around triangle $BHC$ (point $H$ is the orthocenter of triangle $ABC$).

Kyiv City MO Juniors 2003+ geometry, 2007.9.3

On a straight line $4$ points are successively set , $A, P, Q,W $, which are the points of intersection of the bisector $AL $ of the triangle $ABC$ with the circumscribed and inscribed circle. Knowing only these points, construct a triangle $ABC $.

2012 Grigore Moisil Intercounty, 4

[b]a)[/b] Let $ A $ denote the complex numbers of modulus $ 1/3, $ and $ B $ denote the complex numbers of modulus at least $ 1/2. $ Show that $ A+B=AB\neq\mathbb{C} . $ [b]b)[/b] Prove that there is no family $ Y $ of complex numbers that satisfies $ X+Y=XY\neq\mathbb{C} , $ where $ X $ denotes the complex numbers of modulus $ 1. $

2019 Dutch IMO TST, 4

Let $\Delta ABC$ be a scalene triangle. Points $D,E$ lie on side $\overline{AC}$ in the order, $A,E,D,C$. Let the parallel through $E$ to $BC$ intersect $\odot (ABD)$ at $F$, such that, $E$ and $F$ lie on the same side of $AB$. Let the parallel through $E$ to $AB$ intersect $\odot (BDC)$ at $G$, such that, $E$ and $G$ lie on the same side of $BC$. Prove, Points $D,F,E,G$ are concyclic

2008 AIME Problems, 5

In trapezoid $ ABCD$ with $ \overline{BC}\parallel\overline{AD}$, let $ BC\equal{}1000$ and $ AD\equal{}2008$. Let $ \angle A\equal{}37^\circ$, $ \angle D\equal{}53^\circ$, and $ m$ and $ n$ be the midpoints of $ \overline{BC}$ and $ \overline{AD}$, respectively. Find the length $ MN$.

2019 Saint Petersburg Mathematical Olympiad, 6

The bisectors $BB_1$ and $CC_1$ of the acute triangle $ABC$ intersect in point $I$. On the extensions of the segments $BB_1$ and $CC_1$, the points $B'$ and $C'$ are marked, respectively So, the quadrilateral $AB'IC'$ is a parallelogram. Prove that if $\angle BAC = 60^o$, then the straight line $B'C'$ passes through the intersection point of the circumscribed circles of the triangles $BC_1B'$ and $CB_1C'$.

2004 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

2006 Turkey MO (2nd round), 2

$ABC$ be a triangle. Its incircle touches the sides $CB, AC, AB$ respectively at $N_{A},N_{B},N_{C}$. The orthic triangle of $ABC$ is $H_{A}H_{B}H_{C}$ with $H_{A}, H_{B}, H_{C}$ are respectively on $BC, AC, AB$. The incenter of $AH_{C}H_{B}$ is $I_{A}$; $I_{B}$ and $I_{C}$ were defined similarly. Prove that the hexagon $I_{A}N_{B}I_{C}N_{A}I_{B}N_{C}$ has all sides equal.

2010 Romania Team Selection Test, 3

Let $\gamma_1$ and $\gamma_2$ be two circles tangent at point $T$, and let $\ell_1$ and $\ell_2$ be two lines through $T$. The lines $\ell_1$ and $\ell_2$ meet again $\gamma_1$ at points $A$ and $B$, respectively, and $\gamma_2$ at points $A_1$ and $B_1$, respectively. Let further $X$ be a point in the complement of $\gamma_1 \cup \gamma_2 \cup \ell_1 \cup \ell_2$. The circles $ATX$ and $BTX$ meet again $\gamma_2$ at points $A_2$ and $B_2$, respectively. Prove that the lines $TX$, $A_1B_2$ and $A_2B_1$ are concurrent. [i]***[/i]

2018 PUMaC Geometry A, 6

Let triangle $ABC$ have $\angle BAC = 45^{\circ}$ and circumcircle $\Gamma$ and let $M$ be the intersection of the angle bisector of $\angle BAC$ with $\Gamma$. Let $\Omega$ be the circle tangent to segments $\overline{AB}$ and $\overline{AC}$ and internally tangent to $\Gamma$ at point $T$. Given that $\angle TMA = 45^{\circ}$ and that $TM = \sqrt{100 - 50 \sqrt{2}}$, the length of $BC$ can be written as $a \sqrt{b}$, where $b$ is not divisible by the square of any prime. Find $a + b$.

2013 Dutch IMO TST, 5

Let $ABCDEF$ be a cyclic hexagon satisfying $AB\perp BD$ and $BC=EF$.Let $P$ be the intersection of lines $BC$ and $AD$ and let $Q$ be the intersection of lines $EF$ and $AD$.Assume that $P$ and $Q$ are on the same side of $D$ and $A$ is on the opposite side.Let $S$ be the midpoint of $AD$.Let $K$ and $L$ be the incentres of $\triangle BPS$ and $\triangle EQS$ respectively.Prove that $\angle KDL=90^0$.

2011 All-Russian Olympiad Regional Round, 11.6

$\omega$ is the circumcirle of an acute triangle $ABC$. The tangent line passing through $A$ intersects the tangent lines passing through points $B$ and $C$ at points $K$ and $L$, respectively. The line parallel to $AB$ through $K$ and the line parallel to $AC$ through $L$ intersect at point $P$. Prove that $BP=CP$. (Author: P. Kozhevnikov)

2012 South East Mathematical Olympiad, 3

In $\triangle ABC$, point $D$ lies on side $AC$ such that $\angle ABD=\angle C$. Point $E$ lies on side $AB$ such that $BE=DE$. $M$ is the midpoint of segment $CD$. Point $H$ is the foot of the perpendicular from $A$ to $DE$. Given $AH=2-\sqrt{3}$ and $AB=1$, find the size of $\angle AME$.

2016 Romania National Olympiad, 1

The orthocenter $ H $ of a triangle $ ABC $ is distinct from its vertices and its circumcenter $ O. $ $ M,N,P $ are the circumcenters of the triangles $ HBC,HCA, $ respectively, $ HAB. $ Prove that $ AM,BN,CP $ and $ OH $ are concurrent.

2003 India IMO Training Camp, 1

Let $A',B',C'$ be the midpoints of the sides $BC, CA, AB$, respectively, of an acute non-isosceles triangle $ABC$, and let $D,E,F$ be the feet of the altitudes through the vertices $A,B,C$ on these sides respectively. Consider the arc $DA'$ of the nine point circle of triangle $ABC$ lying outside the triangle. Let the point of trisection of this arc closer to $A'$ be $A''$. Define analogously the points $B''$ (on arc $EB'$) and $C''$(on arc $FC'$). Show that triangle $A''B''C''$ is equilateral.