This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1992 Irish Math Olympiad, 4

In a triangle $ABC$, the points $A’$, $B’$ and $C’$ on the sides opposite $A$ ,$B$ and $C$, respectively, are such that the lines $AA’$, $BB’$ and $CC’$ are concurrent. Prove that the diameter of the circumscribed circle of the triangle $ABC$ equals the product $|AB’|\cdot |BC’|\cdot |CA’|$ divided by the area of the triangle $A’B’C’$.

Kyiv City MO Seniors 2003+ geometry, 2007.11.5

The points $A$ and $P$ are marked on the plane. Consider all such points $B, C $ of this plane that $\angle ABP = \angle MAB$ and $\angle ACP = \angle MAC $, where $M$ is the midpoint of the segment $BC$. Prove that all the circumscribed circles around the triangle $ABC$ for different points $B$ and $C$ pass through some fixed point other than the point $A$. (Alexei Klurman)

1986 Vietnam National Olympiad, 2

Let $ R$, $ r$ be respectively the circumradius and inradius of a regular $ 1986$-gonal pyramid. Prove that \[ \frac{R}{r}\ge 1\plus{}\frac{1}{\cos\frac{\pi}{1986}}\] and find the total area of the surface of the pyramid when the equality occurs.

2002 National Olympiad First Round, 21

Let $A_1A_2 \cdots A_{10}$ be a regular decagon such that $[A_1A_4]=b$ and the length of the circumradius is $R$. What is the length of a side of the decagon? $ \textbf{a)}\ b-R \qquad\textbf{b)}\ b^2-R^2 \qquad\textbf{c)}\ R+\dfrac b2 \qquad\textbf{d)}\ b-2R \qquad\textbf{e)}\ 2b-3R $

2011 Croatia Team Selection Test, 3

Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.

2008 Germany Team Selection Test, 3

Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. [i]Author: Farzan Barekat, Canada[/i]

2011 German National Olympiad, 3

Let $ABC$ be an acute triangle and $D$ the foot of the altitude from $A$ onto $BC$. A semicircle with diameter $BC$ intersects segments $AB,AC$ and $AD$ in the points $F,E$ resp. $X$. The circumcircles of the triangles $DEX$ and $DXF$ intersect $BC$ in $L$ resp. $N$ other than $D$. Prove $BN=LC$.

2014 India IMO Training Camp, 1

In a triangle $ABC$, let $I$ be its incenter; $Q$ the point at which the incircle touches the line $AC$; $E$ the midpoint of $AC$ and $K$ the orthocenter of triangle $BIC$. Prove that the line $KQ$ is perpendicular to the line $IE$.

2010 Contests, 2

Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram. Show that $\angle BPC > \angle BAC$.

2019 IberoAmerican, 3

Let $\Gamma$ be the circumcircle of triangle $ABC$. The line parallel to $AC$ passing through $B$ meets $\Gamma$ at $D$ ($D\neq B$), and the line parallel to $AB$ passing through $C$ intersects $\Gamma$ to $E$ ($E\neq C$). Lines $AB$ and $CD$ meet at $P$, and lines $AC$ and $BE$ meet at $Q$. Let $M$ be the midpoint of $DE$. Line $AM$ meets $\Gamma$ at $Y$ ($Y\neq A$) and line $PQ$ at $J$. Line $PQ$ intersects the circumcircle of triangle $BCJ$ at $Z$ ($Z\neq J$). If lines $BQ$ and $CP$ meet each other at $X$, show that $X$ lies on the line $YZ$.

2021 Mexico National Olympiad, 4

Let $ABC$ be an acutangle scalene triangle with $\angle BAC = 60^{\circ}$ and orthocenter $H$. Let $\omega_b$ be the circumference passing through $H$ and tangent to $AB$ at $B$, and $\omega_c$ the circumference passing through $H$ and tangent to $AC$ at $C$. [list] [*] Prove that $\omega_b$ and $\omega_c$ only have $H$ as common point. [*] Prove that the line passing through $H$ and the circumcenter $O$ of triangle $ABC$ is a common tangent to $\omega_b$ and $\omega_c$. [/list] [i]Note:[/i] The orthocenter of a triangle is the intersection point of the three altitudes, whereas the circumcenter of a triangle is the center of the circumference passing through it's three vertices.

2014 Contests, 1

Points $M$, $N$, $K$ lie on the sides $BC$, $CA$, $AB$ of a triangle $ABC$, respectively, and are different from its vertices. The triangle $MNK$ is called[i] beautiful[/i] if $\angle BAC=\angle KMN$ and $\angle ABC=\angle KNM$. If in the triangle $ABC$ there are two beautiful triangles with a common vertex, prove that the triangle $ABC$ is right-angled. [i]Proposed by Nairi M. Sedrakyan, Armenia[/i]

1997 Turkey MO (2nd round), 2

In a triangle $ABC$, the inner and outer bisectors of the $\angle A$ meet the line $BC$ at $D$ and $E$, respectively. Let $d$ be a common tangent of the circumcircle $(O)$ of $\triangle ABC$ and the circle with diameter $DE$ and center $F$. The projections of the tangency points onto $FO$ are denoted by $P$ and $Q$, and the length of their common chord is denoted by $m$. Prove that $PQ = m$

2014 Turkey Junior National Olympiad, 4

$ABC$ is an acute triangle with orthocenter $H$. Points $D$ and $E$ lie on segment $BC$. Circumcircle of $\triangle BHC$ instersects with segments $AD$,$AE$ at $P$ and $Q$, respectively. Prove that if $BD^2+CD^2=2DP\cdot DA$ and $BE^2+CE^2=2EQ\cdot EA$, then $BP=CQ$.

2024 Irish Math Olympiad, P5

Let $A,B,C$ be three points on a circle $\gamma$, and let $L$ denote the midpoint of segment $BC$. The perpendicular bisector of $BC$ intersects the circle $\gamma$ at two points $M$ and $N$, such that $A$ and $M$ are on different sides of line $BC$. Let $S$ denote the point where the segments $BC$ and $AM$ intersect. Line $NS$ intersects the circumcircle of $\triangle ALM$ at two points $D$ and $E$, with $D$ lying in the interior of the circle $\gamma$. (a) Prove that $M$ is the circumcentre of $\triangle BCD$. (b) Prove that the circumcircles of $\triangle BCD$ and $\triangle ADN$ are tangent at the point $D$.

2016 APMO, 1

We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$. [i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]

2006 USA Team Selection Test, 2

In acute triangle $ABC$ , segments $AD; BE$ , and $CF$ are its altitudes, and $H$ is its orthocenter. Circle $\omega$, centered at $O$, passes through $A$ and $H$ and intersects sides $AB$ and $AC$ again at $Q$ and $P$ (other than $A$), respectively. The circumcircle of triangle $OPQ$ is tangent to segment $BC$ at $R$. Prove that $\frac{CR}{BR}=\frac{ED}{FD}.$

1962 IMO Shortlist, 6

Consider an isosceles triangle. let $R$ be the radius of its circumscribed circle and $r$ be the radius of its inscribed circle. Prove that the distance $d$ between the centers of these two circle is \[ d=\sqrt{R(R-2r)} \]

2010 All-Russian Olympiad, 3

Lines tangent to circle $O$ in points $A$ and $B$, intersect in point $P$. Point $Z$ is the center of $O$. On the minor arc $AB$, point $C$ is chosen not on the midpoint of the arc. Lines $AC$ and $PB$ intersect at point $D$. Lines $BC$ and $AP$ intersect at point $E$. Prove that the circumcentres of triangles $ACE$, $BCD$, and $PCZ$ are collinear.

1997 Hungary-Israel Binational, 3

Can a closed disk can be decomposed into a union of two congruent parts having no common point?

2013 APMO, 5

Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.

2019 Federal Competition For Advanced Students, P2, 2

A (convex) trapezoid $ABCD$ is good, if it is inscribed in a circle, sides $AB$ and $CD$ are the bases and $CD$ is shorter than $AB$. For a good trapezoid $ABCD$ the following terms are defined: $\bullet$ The parallel to $AD$ passing through $B$ intersects the extension of side $CD$ at point $S$. $\bullet$ The two tangents passing through $S$ on the circumircle of the trapezoid touch the circle at $E$ and $F$, where $E$ lies on the same side of the straight line $CD$ as $A$. Give the simplest possible equivalent condition (expressed in side lengths and / or angles of the trapezoid) so that with a good trapezoid $ABCD$ the two angles $\angle BSE$ and $\angle FSC$ have the same measure. (Walther Janous)

2017 Saudi Arabia JBMO TST, 2

Let $ABC$ be a triangle inscribed in circle $(O)$ such that points $B, C$ are fixed, while $A$ moves on major arc $BC$ of $(O)$. The tangents through $B$ and $C$ to $(O)$ intersect at $P$. The circle with diameter $OP$ intersects $AC$ and $AB$ at $D$ and $E$, respectively. Prove that $DE$ is tangent to a fixed circle whose radius is half the radius of $(O)$.

Russian TST 2017, P1

Let $ABCD$ be a trapezium, $AD\parallel BC$, and let $E,F$ be points on the sides$AB$ and $CD$, respectively. The circumcircle of $AEF$ meets $AD$ again at $A_1$, and the circumcircle of $CEF$ meets $BC$ again at $C_1$. Prove that $A_1C_1,BD,EF$ are concurrent.

2007 AIME Problems, 15

Four circles $\omega,$ $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$ with the same radius are drawn in the interior of triangle $ABC$ such that $\omega_{A}$ is tangent to sides $AB$ and $AC$, $\omega_{B}$ to $BC$ and $BA$, $\omega_{C}$ to $CA$ and $CB$, and $\omega$ is externally tangent to $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$. If the sides of triangle $ABC$ are $13,$ $14,$ and $15,$ the radius of $\omega$ can be represented in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$