Found problems: 107
2021 Iberoamerican, 6
Consider a $n$-sided regular polygon, $n \geq 4$, and let $V$ be a subset of $r$ vertices of the polygon. Show that if $r(r-3) \geq n$, then there exist at least two congruent triangles whose vertices belong to $V$.
2016 Japan MO Preliminary, 5
Let $ABCD$ be a quadrilateral with $AC=20$, $AD=16$. We take point $P$ on segment $CD$ so that triangle $ABP$ and $ACD$ are congruent. If the area of triangle $APD$ is $28$, find the area of triangle $BCP$. Note that $XY$ expresses the length of segment $XY$.
1986 IMO Longlists, 11
Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.
2014 Online Math Open Problems, 14
Let $ABC$ be a triangle with incenter $I$ and $AB = 1400$, $AC = 1800$, $BC = 2014$. The circle centered at $I$ passing through $A$ intersects line $BC$ at two points $X$ and $Y$. Compute the length $XY$.
[i]Proposed by Evan Chen[/i]
1998 AMC 8, 13
What is the ratio of the area of the shaded square to the area of the large square? (The figure is drawn to scale)
[asy]
draw((0,0)--(0,4)--(4,4)--(4,0)--cycle);
draw((0,0)--(4,4));
draw((0,4)--(3,1)--(3,3));
draw((1,1)--(2,0)--(4,2));
fill((1,1)--(2,0)--(3,1)--(2,2)--cycle,black);[/asy]
$ \text{(A)}\ \frac{1}{6}\qquad\text{(B)}\ \frac{1}{7}\qquad\text{(C)}\ \frac{1}{8}\qquad\text{(D)}\ \frac{1}{12}\qquad\text{(E)}\ \frac{1}{16} $
2008 Junior Balkan Team Selection Tests - Moldova, 11
Let $ABCD$ be a convex quadrilateral with $AD = BC, CD \nparallel AB, AD \nparallel BC$. Points $M$ and $N$ are the midpoints of the sides $CD$ and $AB$, respectively.
a) If $E$ and $F$ are points, such that $MCBF$ and $ADME$ are parallelograms, prove that $\vartriangle BF N \equiv \vartriangle AEN$.
b) Let $P = MN \cap BC$, $Q = AD \cap MN$, $R = AD \cap BC$. Prove that the triangle $PQR$ is iscosceles.
2010 Math Prize For Girls Problems, 10
The triangle $ABC$ lies on the coordinate plane. The midpoint of $\overline{AB}$ has coordinates $(-16, -63)$, the midpoint of $\overline{AC}$ has coordinates $(13, 50)$, and the midpoint of $\overline{BC}$ has coordinates $(6, -85)$. What are the coordinates of point $A$?
Indonesia MO Shortlist - geometry, g3
Suppose $L_1$ is a circle with center $O$, and $L_2$ is a circle with center $O'$. The circles intersect at $ A$ and $ B$ such that $\angle OAO' = 90^o$. Suppose that point $X$ lies on the circumcircle of triangle $OAB$, but lies inside $L_2$. Let the extension of $OX$ intersect $L_1$ at $Y$ and $Z$. Let the extension of $O'X$ intersect $L_2$ at $W$ and $V$ . Prove that $\vartriangle XWZ$ is congruent with $\vartriangle XYV$.
2008 AMC 10, 19
A cylindrical tank with radius $ 4$ feet and height $ 9$ feet is lying on its side. The tank is filled with water to a depth of $ 2$ feet. What is the volume of the water, in cubic feet?
$ \textbf{(A)}\ 24\pi \minus{} 36 \sqrt {2} \qquad \textbf{(B)}\ 24\pi \minus{} 24 \sqrt {3} \qquad \textbf{(C)}\ 36\pi \minus{} 36 \sqrt {3} \qquad \textbf{(D)}\ 36\pi \minus{} 24 \sqrt {2} \\ \textbf{(E)}\ 48\pi \minus{} 36 \sqrt {3}$
2007 Serbia National Math Olympiad, 1
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2018 Sharygin Geometry Olympiad, 4
Find all sets of six points in the plane, no three collinear, such that if we partition the set into two sets, then the obtained triangles are congruent.
2022 IMO Shortlist, G1
Let $ABCDE$ be a convex pentagon such that $BC=DE$. Assume that there is a point $T$ inside $ABCDE$ with $TB=TD,TC=TE$ and $\angle ABT = \angle TEA$. Let line $AB$ intersect lines $CD$ and $CT$ at points $P$ and $Q$, respectively. Assume that the points $P,B,A,Q$ occur on their line in that order. Let line $AE$ intersect $CD$ and $DT$ at points $R$ and $S$, respectively. Assume that the points $R,E,A,S$ occur on their line in that order. Prove that the points $P,S,Q,R$ lie on a circle.
2009 Federal Competition For Advanced Students, P2, 3
Let $P$ be the point in the interior of $\vartriangle ABC$. Let $D$ be the intersection of the lines $AP$ and $BC$ and let $A'$ be the point such that $\overrightarrow{AD} = \overrightarrow{DA'}$. The points $B'$ and $C'$ are defined in the similar way. Determine all points $P$ for which the triangles $A'BC, AB'C$, and $ABC'$ are congruent to $\vartriangle ABC$.
2006 Polish MO Finals, 3
Let $ABCDEF$ be a convex hexagon satisfying $AC=DF$, $CE=FB$ and $EA=BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.
2013 BAMO, 3
Let $H$ be the orthocenter of an acute triangle $ABC$. (The orthocenter is the point at the intersection of the three altitudes. An acute triangle has all angles less than $90^o$.) Draw three circles: one passing through $A, B$, and $H$, another passing through $B, C$, and $H$, and finally, one passing through $C, A$, and $H$. Prove that the triangle whose vertices are the centers of those three circles is congruent to triangle $ABC$.
2012 Balkan MO Shortlist, G3
Let $ABC$ be a triangle with circumcircle $c$ and circumcenter $O$, and let $D$ be a point on the side $BC$ different from the vertices and the midpoint of $BC$. Let $K$ be the point where the circumcircle $c_1$ of the triangle $BOD$ intersects $c$ for the second time and let $Z$ be the point where $c_1$ meets the line $AB$. Let $M$ be the point where the circumcircle $c_2$ of the triangle $COD$ intersects $c$ for the second time and let $E$ be the point where $c_2$ meets the line $AC$. Finally let $N$ be the point where the circumcircle $c_3$ of the triangle $AEZ$ meets $c$ again. Prove that the triangles $ABC$ and $NKM$ are congruent.
2007 Germany Team Selection Test, 1
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2000 Saint Petersburg Mathematical Olympiad, 11.1
An equilateral triangle with side length 9 is divided into 81 congruent triangles with segments which are parallel to the sides of the triangle. Prove that it cannot be divided into more than 18 parallelograms with sides 1 and 2.
[I]Proposed by O.Vanyushina[/i]
2024 Brazil National Olympiad, 2
Let \( ABC \) be a scalene triangle. Let \( E \) and \( F \) be the midpoints of sides \( AC \) and \( AB \), respectively, and let \( D \) be any point on segment \( BC \). The circumcircles of triangles \( BDF \) and \( CDE \) intersect line \( EF \) at points \( K \neq F \), and \( L \neq E \), respectively, and intersect at points \( X \neq D \). The point \( Y \) is on line \( DX \) such that \( AY \) is parallel to \( BC \). Prove that points \( K \), \( L \), \( X \), and \( Y \) lie on the same circle.
VII Soros Olympiad 2000 - 01, 8.8
Is there a quadrilateral, any vertex of which can be moved to another location so that the new quadrilateral is congruent to the original one?
1968 IMO Shortlist, 13
Given two congruent triangles $A_1A_2A_3$ and $B_1B_2B_3$ ($A_iA_k = B_iB_k$), prove that there exists a plane such that the orthogonal projections of these triangles onto it are congruent and equally oriented.
2016 Japan Mathematical Olympiad Preliminary, 5
Let $ABCD$ be a quadrilateral with $AC=20$, $AD=16$. We take point $P$ on segment $CD$ so that triangle $ABP$ and $ACD$ are congruent. If the area of triangle $APD$ is $28$, find the area of triangle $BCP$. Note that $XY$ expresses the length of segment $XY$.
1984 All Soviet Union Mathematical Olympiad, 381
Given triangle $ABC$ . From the $P$ point three lines $(PA),(PB),(PC)$ are drawn. They cross the circumscribed circle at $A_1, B_1,C_1$ points respectively. It comes out that the $A_1B_1C_1$ triangle equals to the initial one. Prove that there are not more than eight such a points $P$ in a plane.
2011 AMC 8, 7
Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially [b]bolded[/b]. What percent of the total area is partially bolded?
[asy]
import graph; size(7.01cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.42,xmax=14.59,ymin=-10.08,ymax=5.26;
pair A=(0,0), B=(4,0), C=(0,4), D=(4,4), F=(2,0), G=(3,0), H=(1,4), I=(2,4), J=(3,4), K=(0,-2), L=(4,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6), F_1=(10,-6), G_1=(6,-4), H_1=(10,-4), I_1=(8,-2), J_1=(8,-6), K_1=(8,-4);
draw(C--H--(1,0)--A--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));
draw(C--D); draw(D--B); draw(B--A); draw(A--C); draw(H--(1,0)); draw(I--F); draw(J--G); draw(C--H,linewidth(1.6)); draw(H--(1,0),linewidth(1.6)); draw((1,0)--A,linewidth(1.6)); draw(A--C,linewidth(1.6)); draw(K--L); draw((4,-6)--L); draw((4,-6)--M); draw(M--K); draw(O--P); draw(Q--R); draw(O--Q); draw(M--O,linewidth(1.6)); draw(O--Q,linewidth(1.6)); draw(Q--R,linewidth(1.6)); draw(R--M,linewidth(1.6)); draw(T--V); draw(V--U); draw(U--(6,0)); draw((6,0)--T); draw((6,2)--Z); draw(A_1--B_1); draw(A_1--Z); draw(A_1--V,linewidth(1.6)); draw(V--Z,linewidth(1.6)); draw(Z--A_1,linewidth(1.6)); draw(C_1--D_1); draw(D_1--F_1); draw(F_1--E_1); draw(E_1--C_1); draw(G_1--H_1); draw(I_1--J_1); draw(G_1--K_1,linewidth(1.6)); draw(K_1--J_1,linewidth(1.6)); draw(J_1--E_1,linewidth(1.6)); draw(E_1--G_1,linewidth(1.6));
dot(A,linewidth(1pt)+ds); dot(B,linewidth(1pt)+ds); dot(C,linewidth(1pt)+ds); dot(D,linewidth(1pt)+ds); dot((1,0),linewidth(1pt)+ds); dot(F,linewidth(1pt)+ds); dot(G,linewidth(1pt)+ds); dot(H,linewidth(1pt)+ds); dot(I,linewidth(1pt)+ds); dot(J,linewidth(1pt)+ds); dot(K,linewidth(1pt)+ds); dot(L,linewidth(1pt)+ds); dot(M,linewidth(1pt)+ds); dot((4,-6),linewidth(1pt)+ds); dot(O,linewidth(1pt)+ds); dot(P,linewidth(1pt)+ds); dot(Q,linewidth(1pt)+ds); dot(R,linewidth(1pt)+ds); dot((6,0),linewidth(1pt)+ds); dot(T,linewidth(1pt)+ds); dot(U,linewidth(1pt)+ds); dot(V,linewidth(1pt)+ds); dot((6,2),linewidth(1pt)+ds); dot(Z,linewidth(1pt)+ds); dot(A_1,linewidth(1pt)+ds); dot(B_1,linewidth(1pt)+ds); dot(C_1,linewidth(1pt)+ds); dot(D_1,linewidth(1pt)+ds); dot(E_1,linewidth(1pt)+ds); dot(F_1,linewidth(1pt)+ds); dot(G_1,linewidth(1pt)+ds); dot(H_1,linewidth(1pt)+ds); dot(I_1,linewidth(1pt)+ds); dot(J_1,linewidth(1pt)+ds); dot(K_1,linewidth(1pt)+ds);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
$ \textbf{(A)}12\frac 12\qquad\textbf{(B)}20\qquad\textbf{(C)}25\qquad\textbf{(D)}33 \frac 13\qquad\textbf{(E)}37\frac 12 $
1990 Baltic Way, 9
Two congruent triangles are inscribed in an ellipse. Are they necessarily symmetric with respect to an axis or the center of the ellipse?