This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 111

2014 Greece JBMO TST, 2

Let $ABCD$ be an inscribed quadrilateral in a circle $c(O,R)$ (of circle $O$ and radius $R$). With centers the vertices $A,B,C,D$, we consider the circles $C_{A},C_{B},C_{C},C_{D}$ respectively, that do not intersect to each other . Circle $C_{A}$ intersects the sides of the quadrilateral at points $A_{1} , A_{2}$ , circle $C_{B}$ intersects the sides of the quadrilateral at points $B_{1} , B_{2}$ , circle $C_{C}$ at points $C_{1} , C_{2}$ and circle $C_{D}$ at points $C_{1} , C_{2}$ . Prove that the quadrilateral defined by lines $A_{1}A_{2} , B_{1}B_{2} , C_{1}C_{2} , D_{1}D_{2}$ is cyclic.

2010 Oral Moscow Geometry Olympiad, 1

Convex $n$-gon $P$, where $n> 3$, is cut into equal triangles by diagonals that do not intersect inside it. What are the possible values of $n$ if the $n$-gon is cyclic?

2016 CentroAmerican, 2

Let $ABC$ be an acute-angled triangle, $\Gamma$ its circumcircle and $M$ the midpoint of $BC$. Let $N$ be a point in the arc $BC$ of $\Gamma$ not containing $A$ such that $\angle NAC= \angle BAM$. Let $R$ be the midpoint of $AM$, $S$ the midpoint of $AN$ and $T$ the foot of the altitude through $A$. Prove that $R$, $S$ and $T$ are collinear.

2008 Switzerland - Final Round, 8

Let $ABCDEF$ be a convex hexagon inscribed in a circle . Prove that the diagonals $AD, BE$ and $CF$ intersect at one point if and only if $$\frac{AB}{BC} \cdot \frac{CD}{DE}\cdot \frac{EF}{FA}=1$$

1994 Poland - Second Round, 3

A plane passing through the center of a cube intersects the cube in a cyclic hexagon. Show that this hexagon is regular.

1969 Poland - Second Round, 3

Given a quadrilateral $ ABCD $ inscribed in a circle. The images of the points $ A $ and $ C $ in symmetry with respect to the line $ BD $ are the points $ A' $ and $ C' $, respectively, and the images of the points $ B $ and $ D $ in symmetry with respect to the line $ AC $ are the points $ B'$ and $D'$ respectively. Prove that the points $ A' $, $ B' $, $ C' $, $ D' $ lie on the circle.

2013 Sharygin Geometry Olympiad, 1

All angles of a cyclic pentagon $ABCDE$ are obtuse. The sidelines $AB$ and $CD$ meet at point $E_1$, the sidelines $BC$ and $DE$ meet at point $A_1$. The tangent at $B$ to the circumcircle of the triangle $BE_1C$ meets the circumcircle $\omega$ of the pentagon for the second time at point $B_1$. The tangent at $D$ to the circumcircle of the triangle $DA_1C$ meets $\omega$ for the second time at point $D_1$. Prove that $B_1D_1 // AE$

1972 All Soviet Union Mathematical Olympiad, 167

The $7$-gon $A_1A_2A_3A_4A_5A_6A_7$ is inscribed in a circle. Prove that if the centre of the circle is inside the $7$-gon , than $$\angle A_1+ \angle A_2 + \angle A_3 < 450^o$$

Kvant 2019, M2588

The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is a) tangential (circumscribed), b) cyclic (inscribed). (Nairi Sedrakyan)

2016 Bosnia and Herzegovina Team Selection Test, 5

Let $k$ be a circumcircle of triangle $ABC$ $(AC<BC)$. Also, let $CL$ be an angle bisector of angle $ACB$ $(L \in AB)$, $M$ be a midpoint of arc $AB$ of circle $k$ containing the point $C$, and let $I$ be an incenter of a triangle $ABC$. Circle $k$ cuts line $MI$ at point $K$ and circle with diameter $CI$ at $H$. If the circumcircle of triangle $CLK$ intersects $AB$ again at $T$, prove that $T$, $H$ and $C$ are collinear. .

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.

Estonia Open Senior - geometry, 1994.2.2

The two sides $BC$ and $CD$ of an inscribed quadrangle $ABCD$ are of equal length. Prove that the area of this quadrangle is equal to $S =\frac12 \cdot AC^2 \cdot \sin \angle A$

2000 IMO Shortlist, 4

Let $ A_1A_2 \ldots A_n$ be a convex polygon, $ n \geq 4.$ Prove that $ A_1A_2 \ldots A_n$ is cyclic if and only if to each vertex $ A_j$ one can assign a pair $ (b_j, c_j)$ of real numbers, $ j = 1, 2, \ldots, n,$ so that $ A_iA_j = b_jc_i - b_ic_j$ for all $ i, j$ with $ 1 \leq i < j \leq n.$

2014 Saudi Arabia GMO TST, 3

Let $ABCDE$ be a cyclic pentagon such that the diagonals $AC$ and $AD$ intersect $BE$ at $P$ and $Q$, respectively, with $BP \cdot QE = PQ^2$. Prove that $BC \cdot DE = CD \cdot PQ$.

Brazil L2 Finals (OBM) - geometry, 2010.5

The diagonals of an cyclic quadrilateral $ABCD$ intersect at $O$. The circumcircles of triangle $AOB$ and $COD$ intersect lines $BC$ and $AD$, for the second time, at points $M, N, P$and $Q$. Prove that the $MNPQ$ quadrilateral is inscribed in a circle of center $O$.

Estonia Open Senior - geometry, 2001.2.3

Let us call a convex hexagon $ABCDEF$ [i]boring [/i] if $\angle A+ \angle C + \angle E = \angle B + \angle D + \angle F$. a) Is every cyclic hexagon boring? b) Is every boring hexagon cyclic?

1989 Tournament Of Towns, (228) 2

Tags: geometry , cyclic , hexagon , area
The hexagon $ABCDEF$ is inscribed in a circle, $AB = BC = a, CD = DE = b$, and $EF = FA = c$. Prove that the area of triangle $BDF$ equals half the area of the hexagon. (I.P. Nagel, Yevpatoria).

1997 Belarusian National Olympiad, 1

Different points $A_1,A_2,A_3,A_4,A_5$ lie on a circle so that $A_1A_2 = A_2A_3 = A_3A_4 =A_4A_5$. Let $A_6$ be the diametrically opposite point to $A_2$, and $A_7$ be the intersection of $A_1A_5$ and $A_3A_6$. Prove that the lines $A_1A_6$ and $A_4A_7$ are perpendicular

2019 Federal Competition For Advanced Students, P2, 2

A (convex) trapezoid $ABCD$ is good, if it is inscribed in a circle, sides $AB$ and $CD$ are the bases and $CD$ is shorter than $AB$. For a good trapezoid $ABCD$ the following terms are defined: $\bullet$ The parallel to $AD$ passing through $B$ intersects the extension of side $CD$ at point $S$. $\bullet$ The two tangents passing through $S$ on the circumircle of the trapezoid touch the circle at $E$ and $F$, where $E$ lies on the same side of the straight line $CD$ as $A$. Give the simplest possible equivalent condition (expressed in side lengths and / or angles of the trapezoid) so that with a good trapezoid $ABCD$ the two angles $\angle BSE$ and $\angle FSC$ have the same measure. (Walther Janous)

2004 Junior Balkan Team Selection Tests - Moldova, 3

Let $ABCD$ be a parallelogram and point $M$ be the midpoint of $[AB]$ so that the quadrilateral $MBCD$ is cyclic. If $N$ is the point of intersection of the lines $DM$ and $BC$, and $P \in BC$, then prove that the ray $(DP$ is the angle bisector of $\angle ADM$ if and only if $PC = 4BC$.

2016 Bulgaria JBMO TST, 2

The vertices of the pentagon $ABCDE$ are on a circle, and the points $H_1, H_2, H_3,H_4$ are the orthocenters of the triangles $ABC, ABE, ACD, ADE$ respectively . Prove that the quadrilateral determined by the four orthocenters is square if and only if $BE \parallel CD$ and the distance between them is $\frac{BE + CD}{2}$.

2002 Estonia Team Selection Test, 4

Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.

2020 Novosibirsk Oral Olympiad in Geometry, 7

Tags: geometry , tangent , cyclic
The quadrilateral $ABCD$ is known to be inscribed in a circle, and that there is a circle with center on side $AD$ tangent to the other three sides. Prove that $AD = AB + CD$.

1967 IMO Longlists, 20

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.

1999 Tournament Of Towns, 2

Let all vertices of a convex quadrilateral $ABCD$ lie on the circumference of a circle with center $O$. Let $F$ be the second intersection point of the circumcircles of the triangles $ABO$ and $CDO$. Prove that the circle passing through the points $A, F$ and $D$ also passes through the intersection point of the segments $AC$ and $BD$. (A Zaslavskiy)