This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

1997 Estonia National Olympiad, 5

There are six small circles in the figure with a radius of $1$ and tangent to a large circle and the sides of the $ABC$ of an equilateral triangle, where touch points are $K, L$ and $M$ respectively with the midpoints of sides $AB, BC$ and $AC$. Find the radius of the large circle and the side of the triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/3/0/f858dcc5840759993ea2722fd9b9b15c18f491.png[/img]

2007 Hanoi Open Mathematics Competitions, 8

Let $ABC$ be an equilateral triangle. For a point $M$ inside $\vartriangle ABC$, let $D,E,F$ be the feet of the perpendiculars from $M$ onto $BC,CA,AB$, respectively. Find the locus of all such points $M$ for which $\angle FDE$ is a right angle.

Denmark (Mohr) - geometry, 2019.5

In the figure below the triangles $BCD, CAE$ and $ABF$ are equilateral, and the triangle $ABC$ is right-angled with $\angle A = 90^o$. Prove that $|AD| = |EF|$. [img]https://1.bp.blogspot.com/-QMMhRdej1x8/XzP18QbsXOI/AAAAAAAAMUI/n53OsE8rwZcjB_zpKUXWXq6bg3o8GUfSwCLcBGAsYHQ/s0/2019%2Bmohr%2Bp5.png[/img]

2019 Canadian Mathematical Olympiad Qualification, 2

Rosemonde is stacking spheres to make pyramids. She constructs two types of pyramids $S_n$ and $T_n$. The pyramid $S_n$ has $n$ layers, where the top layer is a single sphere and the $i^{th}$ layer is an $i\times $i square grid of spheres for each $2 \le i \le n$. Similarly, the pyramid $T_n$ has $n$ layers where the top layer is a single sphere and the $i^{th}$ layer is $\frac{i(i+1)}{2}$ spheres arranged into an equilateral triangle for each $2 \le i \le n$.

2024 Mozambique National Olympiad, P3

Let $ACE$ be a triangle with $\angle ECA=60^{\circ}, \angle AEC=90^{\circ}$. Let $B$ and $D$ be points on the sides $AC$ and $CE$ respectively such that the $\triangle BCD$ is equilateral. Now suppose $BD \cap AE=F$. Find $\angle EAC+\angle EFD$.

2010 Greece Junior Math Olympiad, 2

Let $ABCD$ be a rectangle with sides $AB=a$ and $BC=b$. Let $O$ be the intersection point of it's diagonals. Extent side $BA$ towards $A$ at a segment $AE=AO$, and diagonal $DB$ towards $B$ at a segment $BZ=BO$. If the triangle $EZC$ is an equilateral, then prove that: i) $b=a\sqrt3$ ii) $AZ=EO$ iii) $EO \perp ZD$

2018 Oral Moscow Geometry Olympiad, 6

Cut each of the equilateral triangles with sides $2$ and $3$ into three parts and construct an equilateral triangle from all received parts.

2015 Denmark MO - Mohr Contest, 3

Triangle $ABC$ is equilateral. The point $D$ lies on the extension of $AB$ beyond $B$, the point $E$ lies on the extension of $CB$ beyond $B$, and $|CD| = |DE|$. Prove that $|AD| = |BE|$. [img]https://1.bp.blogspot.com/-QnAXFw3ijn0/XzR0YjqBQ3I/AAAAAAAAMU0/0TvhMQtBNjolYHtgXsQo2OPGJzEYSfCwACLcBGAsYHQ/s0/2015%2BMohr%2Bp3.png[/img]

1967 Spain Mathematical Olympiad, 6

An equilateral triangle $ABC$ with center $O$ and radius $OA = R$ is given, and consider the seven regions that the lines of the sides determine on the plane. It is asked to draw and describe the region of the plane transformed from the two shaded regions in the attached figure, by the inversion of center $O$ and power $R^2$. [img]https://cdn.artofproblemsolving.com/attachments/e/c/bf1cb12c961467d216d54885f3387b328ce744.png[/img]

2007 Sharygin Geometry Olympiad, 10

Find the locus of centers of regular triangles such that three given points $A, B, C$ lie respectively on three lines containing sides of the triangle.

Swiss NMO - geometry, 2005.1

Let $ABC$ be any triangle and $D, E, F$ the midpoints of $BC, CA, AB$. The medians $AD, BE$ and $CF$ intersect at point $S$. At least two of the quadrilaterals $AF SE, BDSF, CESD$ are cyclic. Show that the triangle $ABC$ is equilateral.

2019 Denmark MO - Mohr Contest, 5

In the figure below the triangles $BCD, CAE$ and $ABF$ are equilateral, and the triangle $ABC$ is right-angled with $\angle A = 90^o$. Prove that $|AD| = |EF|$. [img]https://1.bp.blogspot.com/-QMMhRdej1x8/XzP18QbsXOI/AAAAAAAAMUI/n53OsE8rwZcjB_zpKUXWXq6bg3o8GUfSwCLcBGAsYHQ/s0/2019%2Bmohr%2Bp5.png[/img]

2016 Portugal MO, 3

Let $[ABC]$ be an equilateral triangle on the side $1$. Determine the length of the smallest segment $[DE]$, where $D$ and $E$ are on the sides of the triangle, which divides $[ABC]$ into two figures with equal area.

I Soros Olympiad 1994-95 (Rus + Ukr), 9.2

Given a regular $72$-gon. Lenya and Kostya play the game "Make an equilateral triangle." They take turns marking with a pencil on one still unmarked angle of the $72$-gon: Lenya uses red. Kostya uses blue. Lenya starts the game, and the one who marks first wins if its color is three vertices that are the vertices of some equilateral triangle, if all the vertices are marked and no such a triangle exists, the game ends in a draw. Prove that Kostya can play like this so as not to lose.

Champions Tournament Seniors - geometry, 2016.3

Let $t$ be a line passing through the vertex $A$ of the equilateral $ABC$, parallel to the side $BC$. On the side $AC$ arbitrarily mark the point $D$. Bisector of the angle $ABD$ intersects the line $t$at the point $E$. Prove that $BD=CD+AE$.

2010 Denmark MO - Mohr Contest, 5

An equilateral triangle $ABC$ is given. With $BC$ as diameter, a semicircle is drawn outside the triangle. On the semicircle, points $D$ and $E$ are chosen such that the arc lengths $BD, DE$ and $EC$ are equal. Prove that the line segments $AD$ and $AE$ divide the side $BC$ into three equal parts. [img]https://1.bp.blogspot.com/-hQQV-Of96Ls/XzXCZjCledI/AAAAAAAAMV0/SwXa4mtEEm04onYbFGZiTc5NSpkoyvJLwCLcBGAsYHQ/s0/2010%2BMohr%2Bp5.png[/img]

Ukraine Correspondence MO - geometry, 2015.8

On the sides $BC, AC$ and $AB$ of the equilateral triangle $ABC$ mark the points $D, E$ and $F$ so that $\angle AEF = \angle FDB$ and $\angle AFE = \angle EDC$. Prove that $DA$ is the bisector of the angle $EDF$.

2006 Oral Moscow Geometry Olympiad, 6

In an acute-angled triangle, one of the angles is $60^o$. Prove that the line passing through the center of the circumcircle and the intersection point of the medians of the triangle cuts off an equilateral triangle from it. (A. Zaslavsky)

2014 Junior Balkan Team Selection Tests - Romania, 4

On each side of an equilateral triangle of side $n \ge 1$ consider $n - 1$ points that divide the sides into $n$ equal segments. Through these points draw parallel lines to the sides of the triangles, obtaining a net of equilateral triangles of side length $1$. On each of the vertices of the small triangles put a coin head up. A move consists in flipping over three mutually adjacent coins. Find all values of $n$ for which it is possible to turn all coins tail up after a finite number of moves. Colombia 1997

2015 Costa Rica - Final Round, G1

Points $A, B, C$ are vertices of an equilateral triangle inscribed in a circle. Point $D$ lies on the shorter arc $\overarc {AB}$ . Prove that $AD + BD = DC$.

2004 Estonia National Olympiad, 3

Let $K, L, M$ be the feet of the altitudes drawn from the vertices $A, B, C$ of triangle $ABC$, respectively. Prove that $\overrightarrow{AK} + \overrightarrow{BL} + \overrightarrow{CM} = \overrightarrow{O}$ if and only if $ABC$ is equilateral.

2020 Puerto Rico Team Selection Test, 1

We have $10,000$ identical equilateral triangles. Consider the largest regular hexagon that can be formed with these triangles without overlapping. How many triangles will not be used?

Kyiv City MO 1984-93 - geometry, 1990.8.2

A line passes through the center $O$ of an equilateral triangle $ABC$ and intersects the side $BC$. At what angle wrt $BC$ should this line be drawn this line so that its segment inside the triangle has the smallest possible length?

1998 Italy TST, 2

In a triangle $ABC$, points $H,M,L$ are the feet of the altitude from $C$, the median from $A$, and the angle bisector from $B$, respectively. Show that if triangle $HML$ is equilateral, then so is triangle $ABC$.

1957 Moscow Mathematical Olympiad, 365

(a) Given a point $O$ inside an equilateral triangle $\vartriangle ABC$. Line $OG$ connects $O$ with the center of mass $G$ of the triangle and intersects the sides of the triangle, or their extensions, at points $A', B', C'$ . Prove that $$\frac{A'O}{A'G} + \frac{B'O}{B'G} + \frac{C'O}{C'G} = 3.$$ (b) Point $G$ is the center of the sphere inscribed in a regular tetrahedron $ABCD$. Straight line $OG$ connecting $G$ with a point $O$ inside the tetrahedron intersects the faces at points $A', B', C', D'$. Prove that $$\frac{A'O}{A'G} + \frac{B'O}{B'G} + \frac{C'O}{C'G}+ \frac{D'O}{D'G} = 4.$$