This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 100

1999 Tournament Of Towns, 4

Points $K, L$ on sides $AC, CB$ respectively of a triangle $ABC$ are the points of contact of the excircles with the corresponding sides . Prove that the straight line through the midpoints of $KL$ and $AB$ (a) divides the perimeter of triangle $ABC$ in half, (b) is parallel to the bisector of angle $ACB$. ( L Emelianov)

2009 Sharygin Geometry Olympiad, 8

A triangle $ABC$ is given, in which the segment $BC$ touches the incircle and the corresponding excircle in points $M$ and $N$. If $\angle BAC = 2 \angle MAN$, show that $BC = 2MN$. (N.Beluhov)

1986 Bundeswettbewerb Mathematik, 2

A triangle has sides $a, b,c$, radius of the incircle $r$ and radii of the excircles $r_a, r_b, r_c$: Prove that: a) The triangle is right-angled if and only if: $r + r_a + r_b + r_c = a + b + c$. b) The triangle is right-angled if and only if: $r^2 + r^2_a + r^2_b + r^2_c = a^2 + b^2 + c^2$.

2024 Myanmar IMO Training, 8

Let $ABC$ be a triangle and let $X$ and $Y$ be points on the $A$-symmedian such that $AX = XB$ and $AY = YC$. Let $BX$ and $CY$ meet at $Z$. Let the $Z$-excircle of triangle $XYZ$ touch $ZX$ and $ZY$ at $E$ and $F$. Show that $A$, $E$, $F$ are collinear.

1966 IMO Longlists, 19

Construct a triangle given the radii of the excircles.

2018 Yasinsky Geometry Olympiad, 4

Let $I_a$ be the point of the center of an ex-circle of the triangle $ABC$, which touches the side $BC$ . Let $W$ be the intersection point of the bisector of the angle $\angle A$ of the triangle $ABC$ with the circumcircle of the triangle $ABC$. Perpendicular from the point $W$ on the straight line $AB$, intersects the circumcircle of $ABC$ at the point $P$. Prove, that if the points $B, P, I_a$ lie on the same line, then the triangle $ABC$ is isosceles. (Mykola Moroz)

2011 Sharygin Geometry Olympiad, 5

The touching point of the excircle with the side of a triangle and the base of the altitude to this side are symmetric wrt the base of the corresponding bisector. Prove that this side is equal to one third of the perimeter.

2004 Korea Junior Math Olympiad, 4

$ABCD$ is a cyclic quadrilateral inscribed in circle $O$. Let $O_1$ be the $A$-excenter of $ABC$ and $O_2$ the $A$-excenter of $ABD$. Show that $A, B, O_1, O_2$ is concyclic, and $O$ passes through the center of $(ABO_1O_2)$. Recall that for concyclic $X, Y, Z, W$, the notation $(XYZW)$ denotes the circumcircle of $XYZW$.

2018 Brazil Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2013 JBMO Shortlist, 4

Let $I$ be the incenter and $AB$ the shortest side of the triangle $ABC$. The circle centered at $I$ passing through $C$ intersects the ray $AB$ in $P$ and the ray $BA$ in $Q$. Let $D$ be the point of tangency of the $A$-excircle of the triangle $ABC$ with the side $BC$. Let $E$ be the reflection of $C$ with respect to the point $D$. Prove that $PE\perp CQ$.

2020 Estonia Team Selection Test, 2

Let $M$ be the midpoint of side BC of an acute-angled triangle $ABC$. Let $D$ and $E$ be the center of the excircle of triangle $AMB$ tangent to side $AB$ and the center of the excircle of triangle $AMC$ tangent to side $AC$, respectively. The circumscribed circle of triangle $ABD$ intersects line$ BC$ for the second time at point $F$, and the circumcircle of triangle $ACE$ is at point $G$. Prove that $| BF | = | CG|$.

2018 Oral Moscow Geometry Olympiad, 3

On the extensions of sides $CA$ and $AB$ of triangle $ABC$ beyond points $A$ and $B$, respectively, the segments $AE = BC$ and $BF = AC$ are drawn. A circle is tangent to segment $BF$ at point $N$, side $BC$ and the extension of side $AC$ beyond point $C$. Point $M$ is the midpoint of segment $EF$. Prove that the line $MN$ is parallel to the bisector of angle $A$.

2025 Philippine MO, P4

Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on side $BC$. Points $X$ and $Y$ are chosen on lines $BI$ and $CI$ respectively such that $DXIY$ is a parallelogram. Points $E$ and $F$ are chosen on side $BC$ such that $AX$ and $AY$ are the angle bisectors of angles $\angle BAE$ and $\angle CAF$ respectively. Let $\omega$ be the circle tangent to segment $EF$, the extension of $AE$ past $E$, and the extension of $AF$ past $F$. Prove that $\omega$ is tangent to the circumcircle of triangle $ABC$.

Croatia MO (HMO) - geometry, 2012.7

Let the points $M$ and $N$ be the intersections of the inscribed circle of the right-angled triangle $ABC$, with sides $AB$ and $CA$ respectively , and points $P$ and $Q$ respectively be the intersections of the ex-scribed circles opposite to vertices $B$ and $C$ with direction $BC$. Prove that the quadrilateral $MNPQ$ is a cyclic if and only if the triangle $ABC$ is right-angled with a right angle at the vertex $A$.

2022 AMC 12/AHSME, 25

A circle with integer radius $r$ is centered at $(r, r)$. Distinct line segments of length $c_i$ connect points $(0, a_i)$ to $(b_i, 0)$ for $1 \le i \le 14$ and are tangent to the circle, where $a_i$, $b_i$, and $c_i$ are all positive integers and $c_1 \le c_2 \le \cdots \le c_{14}$. What is the ratio $\frac{c_{14}}{c_1}$ for the least possible value of $r$? $\textbf{(A)} ~\frac{21}{5} \qquad\textbf{(B)} ~\frac{85}{13} \qquad\textbf{(C)} ~7 \qquad\textbf{(D)} ~\frac{39}{5} \qquad\textbf{(E)} ~17 $

2019 Czech and Slovak Olympiad III A, 4

Let be $ABC$ an acute-angled triangle. Consider point $P$ lying on the opposite ray to the ray $BC$ such that $|AB|=|BP|$. Similarly, consider point $Q$ on the opposite ray to the ray $CB$ such that $|AC|=|CQ|$. Denote $J$ the excenter of $ABC$ with respect to $A$ and $D,E$ tangent points of this excircle with the lines $AB$ and $AC$, respectively. Suppose that the opposite rays to $DP$ and $EQ$ intersect in $F\neq J$. Prove that $AF\perp FJ$.

2007 Silk Road, 2

Let $\omega$ be the incircle of triangle $ABC$ touches $BC$ at point $K$ . Draw a circle passing through points $B$ and $C$ , and touching $\omega$ at the point $S$ . Prove that $S K$ passes through the center of the exscribed circle of triangle $A B C$ , tangent to side $B C$ .

Indonesia MO Shortlist - geometry, g10

Given a triangle $ABC$ with incenter $I$ . It is known that $E_A$ is center of the ex-circle tangent to $BC$. Likewise, $E_B$ and $E_C$ are the centers of the ex-circles tangent to $AC$ and $AB$, respectively. Prove that $I$ is the orthocenter of the triangle $E_AE_BE_C$.

2021 Sharygin Geometry Olympiad, 13

In triangle $ABC$ with circumcircle $\Omega$ and incenter $I$, point $M$ bisects arc $BAC$ and line $\overline{AI}$ meets $\Omega$ at $N\ne A$. The excircle opposite to $A$ touches $\overline{BC}$ at point $E$. Point $Q\ne I$ on the circumcircle of $\triangle MIN$ is such that $\overline{QI}\parallel\overline{BC}$. Prove that the lines $\overline{AE}$ and $\overline{QN}$ meet on $\Omega$.

2014 Regional Olympiad of Mexico Center Zone, 3

Let $AB$ be a triangle and $\Gamma$ the excircle, relative to the vertex $A$, with center $D$. The circle $\Gamma$ is tangent to the lines $AB$ and $AC$ at $E$ and $F$, respectively. Let $P$ and $Q$ be the intersections of $EF$ with $BD$ and $CD$, respectively. If $O$ is the point of intersection of $BQ$ and $CP$, show that the distance from $O$ to the line $BC$ is equal to the radius of the inscribed circle in the triangle $ABC$.

2019 Oral Moscow Geometry Olympiad, 4

Given a right triangle $ABC$ ($\angle C=90^o$). The $C$-excircle touches the hypotenuse $AB$ at point $C_1, A_1$ is the touchpoint of $B$-excircle with line $BC, B_1$ is the touchpoint of $A$-excircle with line $AC$. Find the angle $\angle A_1C_1B_1$.

2014 Costa Rica - Final Round, 5

Let $ABC$ be a triangle, with $A'$, $B'$, and $C'$ the points of tangency of the incircle with $BC$, $CA$, and $AB$ respectively. Let $X$ be the intersection of the excircle with respect to $A$ with $AB$, and $M$ the midpoint of $BC$. Let $D$ be the intersection of $XM$ with $B'C'$. Show that $\angle C'A'D' = 90^o$.

2018 Thailand TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2006 Austria Beginners' Competition, 4

Show that if a triangle has two excircles of the same size, then the triangle is isosceles. (Note: The excircle $ABC$ to the side $ a$ touches the extensions of the sides $AB$ and $AC$ and the side $BC$.)

2010 Ukraine Team Selection Test, 11

Let $ABC$ be the triangle in which $AB> AC$. Circle $\omega_a$ touches the segment of the $BC$ at point $D$, the extension of the segment $AB$ towards point $B$ at the point $F$, and the extension of the segment $AC$ towards point $C$ at the point $E$. The ray $AD$ intersects circle $\omega_a$ for second time at point $M$. Denote the circle circumscribed around the triangle $CDM$ by $\omega$. Circle $\omega$ intersects the segment $DF$ at N. Prove that $FN > ND$.