This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 185

1973 Polish MO Finals, 6

Prove that for every centrally symmetric polygon there is at most one ellipse containing the polygon and having the minimal area.

1995 North Macedonia National Olympiad, 2

Let $ a, $ $ b $, and $ c $ be sides in a triangle, a $ h_a, $ $ h_b $, and $ h_c $ are the corresponding altitudes. Prove that $h ^ 2_a + h ^ 2_b + h ^ 2_c \leq \frac{3}{4} (a ^ 2 + b ^ 2 + c ^ 2). $ When is the equation valid?

2001 Estonia Team Selection Test, 2

Point $X$ is taken inside a regular $n$-gon of side length $a$. Let $h_1,h_2,...,h_n$ be the distances from $X$ to the lines defined by the sides of the $n$-gon. Prove that $\frac{1}{h_1}+\frac{1}{h_2}+...+\frac{1}{h_n}>\frac{2\pi}{a}$

1973 Bulgaria National Olympiad, Problem 6

In the tetrahedron $ABCD$, $E$ and $F$ are the midpoints of $BC$ and $AD$, $G$ is the midpoint of the segment $EF$. Construct a plane through $G$ intersecting the segments $AB$, $AC$, $AD$ in the points $M,N,P$ respectively in such a way that the sum of the volumes of the tetrahedrons $BMNP$, $CMNP$ and $DMNP$ to be minimal. [i]H. Lesov[/i]

2003 Singapore MO Open, 4

The pentagon $ABCDE$ which is inscribed in a circle with $AB < DE$ is the base of a pyramid with apex $S$. If the longest side from $S$ is $SA$, prove that $BS > CS$.

1975 Bulgaria National Olympiad, Problem 4

In the plane are given a circle $k$ with radii $R$ and the points $A_1,A_2,\ldots,A_n$, lying on $k$ or outside $k$. Prove that there exist infinitely many points $X$ from the given circumference for which $$\sum_{i=1}^n A_iX^2\ge2nR^2.$$ Does there exist a pair of points on different sides of some diameter, $X$ and $Y$ from $k$, such that $$\sum_{i=1}^n A_iX^2\ge2nR^2\text{ and }\sum_{i=1}^n A_iY^2\ge2nR^2?$$ [i]H. Lesov[/i]

1961 Polish MO Finals, 3

Prove that if a plane section of a tetrahedron is a parallelogram, then half of its perimeter is contained between the length of the smallest and the length of the largest edge of the tetrahedron.

1983 Swedish Mathematical Competition, 5

Show that a unit square can be covered with three equal disks with radius less than $\frac{1}{\sqrt{2}}$. What is the smallest possible radius?

2016 Romania National Olympiad, 3

If $a, b$ and $c$ are the length of the sides of a triangle, show that $$\frac32 \le \frac{b + c}{b + c + 2a}+ \frac{a + c}{a + c + 2b}+ \frac{a + b}{a + b + 2c}\le \frac53.$$

1954 Kurschak Competition, 1

$ABCD$ is a convex quadrilateral with $AB + BD = AC + CD$. Prove that $AB < AC$.

2002 Estonia National Olympiad, 3

Prove that for positive real numbers $a, b$ and $c$ the inequality $2(a^4+b^4+c^4) < (a^2+b^2+c^2)^2$ holds if and only if $a,b,c$ are the sides of a triangle.

1999 French Mathematical Olympiad, Problem 3

For which acute-angled triangles is the ratio of the smallest side to the inradius the maximum?

1985 Austrian-Polish Competition, 3

In a convex quadrilateral of area $1$, the sum of the lengths of all sides and diagonals is not less than $4+\sqrt 8$. Prove this.

2002 Junior Balkan Team Selection Tests - Romania, 4

Five points are given in the plane that each of $10$ triangles they define has area greater than $2$. Prove that there exists a triangle of area greater than $3$.

2016 Flanders Math Olympiad, 3

Three line segments divide a triangle into five triangles. The area of these triangles is called $u, v, x,$ yand $z$, as in the figure. (a) Prove that $uv = yz$. (b) Prove that the area of the great triangle is at most $ \frac{xz}{y}$ [img]https://cdn.artofproblemsolving.com/attachments/9/4/2041d62d014cf742876e01dd8c604c4d38a167.png[/img]

1975 Polish MO Finals, 5

Show that it is possible to circumscribe a circle of radius $R$ about, and inscribe a circle of radius $r$ in some triangle with one angle equal to $a$, if and only if $$\frac{2R}{r} \ge \dfrac{1}{ \sin \frac{a}{2} \left(1- \sin \frac{a}{2} \right)}$$

2009 Iran MO (2nd Round), 3

Let $ ABC $ be a triangle and the point $ D $ is on the segment $ BC $ such that $ AD $ is the interior bisector of $ \angle A $. We stretch $ AD $ such that it meets the circumcircle of $ \Delta ABC $ at $ M $. We draw a line from $ D $ such that it meets the lines $ MB,MC $ at $ P,Q $, respectively ($ M $ is not between $ B,P $ and also is not between $ C,Q $). Prove that $ \angle PAQ\geq\angle BAC $.

1916 Eotvos Mathematical Competition, 2

Let the bisector of the angle at $C$ of triangle $ABC$ intersect side $AB$ in point $D$. Show that the segment $CD$ is shorter than the geometric mean of the sides $CA$ and $CB$. (The geometric mean of two positive numbers is the square root of their product; the geometric mean of $n$ numbers is the $n$-th root of their product.

1972 Polish MO Finals, 2

On the plane are given $n > 2$ points, no three of which are collinear. Prove that among all closed polygonal lines passing through these points, any one with the minimum length is non-selfintersecting.

2015 Sharygin Geometry Olympiad, P15

The sidelengths of a triangle $ABC$ are not greater than $1$. Prove that $p(1 -2Rr)$ is not greater than $1$, where $p$ is the semiperimeter, $R$ and $r$ are the circumradius and the inradius of $ABC$.

2012 Bogdan Stan, 4

Let $ D $ be a point on the side $ BC $ (excluding its endpoints) of a triangle $ ABC $ with $ AB>AC, $ such that $ \frac{\angle BAD}{\angle BAC} $ is a rational number. Prove the following: $$ \frac{\angle BAD}{\angle BAC} < \frac{AB\cdot AC - AC\cdot AD}{AB\cdot AD - AC\cdot AD} $$

1934 Eotvos Mathematical Competition, 2

Which polygon inscribed in a given circle has the property that the sum of the squares of the lengths of its sides is maximum?

1996 North Macedonia National Olympiad, 3

Prove that if $\alpha, \beta, \gamma$ are angles of a triangle, then $\frac{1}{\sin \alpha}+ \frac{1}{\sin \beta} \ge \frac{8}{ 3+2 \ cos\gamma}$ .

Durer Math Competition CD Finals - geometry, 2016.C2

Show that in a triangle the altitude of the longest side is at most as long as it the the sum of the lengths of the perpendicular segments drawn from any point on the longest side on the other two sides.

1995 Czech And Slovak Olympiad IIIA, 1

Suppose that tetrahedron $ABCD$ satisfies $\angle BAC+\angle CAD+\angle DAB = \angle ABC+\angle CBD+\angle DBA = 180^o$. Prove that $CD \ge AB$.