Found problems: 1581
2013 USA TSTST, 7
A country has $n$ cities, labelled $1,2,3,\dots,n$. It wants to build exactly $n-1$ roads between certain pairs of cities so that every city is reachable from every other city via some sequence of roads. However, it is not permitted to put roads between pairs of cities that have labels differing by exactly $1$, and it is also not permitted to put a road between cities $1$ and $n$. Let $T_n$ be the total number of possible ways to build these roads.
(a) For all odd $n$, prove that $T_n$ is divisible by $n$.
(b) For all even $n$, prove that $T_n$ is divisible by $n/2$.
1988 National High School Mathematics League, 10
Lengths of two sides of a rectangle are $\sqrt2,1$. The rectangle rotates a round around one of its diagonal. Find the volume of the revolved body.
1984 AIME Problems, 6
Three circles, each of radius 3, are drawn with centers at $(14,92)$, $(17,76)$, and $(19,84)$. A line passing through $(17,76)$ is such that the total area of the parts of the three circles to one side of the line is equal to the total area of the parts of the three circles to the other side of it. What is the absolute value of the slope of this line?
2011 China Team Selection Test, 1
In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.
2011 Northern Summer Camp Of Mathematics, 3
Given an acute triangle $ABC$ such that $\angle C< \angle B< \angle A$. Let $I$ be the incenter of $ABC$. Let $M$ be the midpoint of the smaller arc $BC$, $N$ be the midpoint of the segment $BC$ and let $E$ be a point such that $NE=NI$. The line $ME$ intersects circumcircle of $ABC$ at $Q$ (different from $A, B$, and $C$). Prove that
[b](i)[/b] The point $Q$ is on the smaller arc $AC$ of circumcircle of $ABC$.
[b](ii)[/b] $BQ=AQ+CQ$
2006 Kyiv Mathematical Festival, 1
See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url]
Triangle $ABC$ and straight line $l$ are given at the plane. Construct using a compass and a ruler the straightline which is parallel to $l$ and bisects the area of triangle $ABC.$
2009 Sharygin Geometry Olympiad, 12
Let $ CL$ be a bisector of triangle $ ABC$. Points $ A_1$ and $ B_1$ are the reflections of $ A$ and $ B$ in $ CL$, points $ A_2$ and $ B_2$ are the reflections of $ A$ and $ B$ in $ L$. Let $ O_1$ and $ O_2$ be the circumcenters of triangles $ AB_1B_2$ and $ BA_1A_2$ respectively. Prove that angles $ O_1CA$ and $ O_2CB$ are equal.
2009 Sharygin Geometry Olympiad, 4
Three parallel lines $d_a, d_b, d_c$ pass through the vertex of triangle $ABC$. The reflections of $d_a, d_b, d_c$ in $BC, CA, AB$ respectively form triangle $XYZ$. Find the locus of incenters of such triangles.
(C.Pohoata)
2017 Vietnamese Southern Summer School contest, Problem 3
Let $\omega$ be a circle with center $O$ and a non-diameter chord $BC$ of $\omega$. A point $A$ varies on $\omega$ such that $\angle BAC<90^{\circ}$. Let $S$ be the reflection of $O$ through $BC$. Let $T$ be a point on $OS$ such that the bisector of $\angle BAC$ also bisects $\angle TAS$.
1. Prove that $TB=TC=TO$.
2. $TB, TC$ cut $\omega$ the second times at points $E, F$, respectively. $AE, AF$ cut $BC$ at $M, N$, respectively. Let $SM$ intersects the tangent line at $C$ of $\omega$ at $X$, $SN$ intersects the tangent line at $B$ of $\omega$ at $Y$. Prove that the bisector of $\angle BAC$ also bisects $\angle XAY$.
2008 Harvard-MIT Mathematics Tournament, 26
Let $ \mathcal P$ be a parabola, and let $ V_1$ and $ F_1$ be its vertex and focus, respectively. Let $ A$ and $ B$ be points on $ \mathcal P$ so that $ \angle AV_1 B \equal{} 90^\circ$. Let $ \mathcal Q$ be the locus of the midpoint of $ AB$. It turns out that $ \mathcal Q$ is also a parabola, and let $ V_2$ and $ F_2$ denote its vertex and focus, respectively. Determine the ratio $ F_1F_2/V_1V_2$.
2013 China Team Selection Test, 1
The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.
2011 NIMO Summer Contest, 8
Triangle $ABC$ with $\measuredangle A = 90^\circ$ has incenter $I$. A circle passing through $A$ with center $I$ is drawn, intersecting $\overline{BC}$ at $E$ and $F$ such that $BE < BF$. If $\tfrac{BE}{EF} = \tfrac{2}{3}$, then $\tfrac{CF}{FE} = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[i]Proposed by Lewis Chen
[/i]
1978 USAMO, 2
$ABCD$ and $A'B'C'D'$ are square maps of the same region, drawn to different scales and superimposed as shown in the figure. Prove that there is only one point $O$ on the small map that lies directly over point $O'$ of the large map such that $O$ and $O'$ each represent the same place of the country. Also, give a Euclidean construction (straight edge and compass) for $O$.
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
real theta = -100, r = 0.3; pair D2 = (0.3,0.76);
string[] lbl = {'A', 'B', 'C', 'D'}; draw(unitsquare); draw(shift(D2)*rotate(theta)*scale(r)*unitsquare);
for(int i = 0; i < lbl.length; ++i) {
pair Q = dir(135-90*i), P = (.5,.5)+Q/2^.5;
label("$"+lbl[i]+"'$", P, Q);
label("$"+lbl[i]+"$",D2+rotate(theta)*(r*P), rotate(theta)*Q);
}[/asy]
2012 Vietnam Team Selection Test, 3
Let $p\ge 17$ be a prime. Prove that $t=3$ is the largest positive integer which satisfies the following condition:
For any integers $a,b,c,d$ such that $abc$ is not divisible by $p$ and $(a+b+c)$ is divisible by $p$, there exists integers $x,y,z$ belonging to the set $\{0,1,2,\ldots , \left\lfloor \frac{p}{t} \right\rfloor - 1\}$ such that $ax+by+cz+d$ is divisible by $p$.
2007 F = Ma, 11
A uniform disk, a thin hoop, and a uniform sphere, all with the same mass and same outer radius, are each free to rotate about a fixed axis through its center. Assume the hoop is connected to the rotation axis by light spokes. With the objects starting from rest, identical forces are simultaneously applied to the rims, as shown. Rank the objects according to their kinetic energies after a given time $t$, from least to greatest.
[asy]
size(225);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
filldraw(circle((0,0),1),gray(.7));
draw((0,-1)--(2,-1),EndArrow);
label("$\vec{F}$",(1, -1),S);
label("Disk",(-1,0),W);
filldraw(circle((5,0),1),gray(.7));
filldraw(circle((5,0),0.75),white);
draw((5,-1)--(7,-1),EndArrow);
label("$\vec{F}$",(6, -1),S);
label("Hoop",(6,0),E);
filldraw(circle((10,0),1),gray(.5));
draw((10,-1)--(12,-1),EndArrow);
label("$\vec{F}$",(11, -1),S);
label("Sphere",(11,0),E);
[/asy]
$ \textbf{(A)} \ \text{disk, hoop, sphere}$
$\textbf{(B)}\ \text{sphere, disk, hoop}$
$\textbf{(C)}\ \text{hoop, sphere, disk}$
$\textbf{(D)}\ \text{disk, sphere, hoop}$
$\textbf{(E)}\ \text{hoop, disk, sphere} $
1976 Bundeswettbewerb Mathematik, 2
Two congruent squares $Q$ and $Q'$ are given in the plane. Show that they can be divided into parts $T_1, T_2, \ldots , T_n$ and $T'_1 , T'_2 , \ldots , T'_n$, respectively, such that $T'_i$ is the image of $T_i$ under a translation for $i=1,2, \ldots, n.$
2007 Italy TST, 1
Let $ABC$ an acute triangle.
(a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$;
(b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.
2011 China Girls Math Olympiad, 8
The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.
2009 Czech-Polish-Slovak Match, 4
Given a circle, let $AB$ be a chord that is not a diameter, and let $C$ be a point on the longer arc $AB$. Let $K$ and $L$ denote the reflections of $A$ and $B$, respectively, about lines $BC$ and $AC$, respectively. Prove that the distance between the midpoint of $AB$ and the midpoint of $KL$ is independent of the choice of $C$.
Today's calculation of integrals, 857
Let $f(x)=\lim_{n\to\infty} (\cos ^ n x+\sin ^ n x)^{\frac{1}{n}}$ for $0\leq x\leq \frac{\pi}{2}.$
(1) Find $f(x).$
(2) Find the volume of the solid generated by a rotation of the figure bounded by the curve $y=f(x)$ and the line $y=1$ around the $y$-axis.
2012 ELMO Shortlist, 5
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$.
[i]Calvin Deng.[/i]
2008 Spain Mathematical Olympiad, 2
Given a circle, two fixed points $A$ and $B$ and a variable point $P$, all of them on the circle, and a line $r$, $PA$ and $PB$ intersect $r$ at $C$ and $D$, respectively. Find two fixed points on $r$, $M$ and $N$, such that $CM\cdot DN$ is constant for all $P$.
1993 All-Russian Olympiad, 4
On a board, there are $n$ equations in the form $*x^2+*x+*$. Two people play a game where they take turns. During a turn, you are aloud to change a star into a number not equal to zero. After $3n$ moves, there will be $n$ quadratic equations. The first player is trying to make more of the equations not have real roots, while the second player is trying to do the opposite. What is the maximum number of equations that the first player can create without real roots no matter how the second player acts?
2012 Today's Calculation Of Integral, 780
Let $n\geq 3$ be integer. Given a regular $n$-polygon $P$ with side length 4 on the plane $z=0$ in the $xyz$-space.Llet $G$ be a circumcenter of $P$. When the center of the sphere $B$ with radius 1 travels round along the sides of $P$, denote by $K_n$ the solid swept by $B$.
Answer the following questions.
(1) Take two adjacent vertices $P_1,\ P_2$ of $P$. Let $Q$ be the intersection point between the perpendicular dawn from $G$ to $P_1P_2$,
prove that $GQ>1$.
(2) (i) Express the area of cross section $S(t)$ in terms of $t,\ n$ when $K_n$ is cut by the plane $z=t\ (-1\leq t\leq 1)$.
(ii) Express the volume $V(n)$ of $K_n$ in terms of $n$.
(3) Denote by $l$ the line which passes through $G$ and perpendicular to the plane $z=0$. Express the volume $W(n)$ of the solid by generated by a rotation of $K_n$ around $l$ in terms of $n$.
(4) Find $\lim_{n\to\infty} \frac{V(n)}{W(n)} .$
2005 Junior Balkan Team Selection Tests - Romania, 11
Three circles $\mathcal C_1(O_1)$, $\mathcal C_2(O_2)$ and $\mathcal C_3(O_3)$ share a common point and meet again pairwise at the points $A$, $B$ and $C$. Show that if the points $A$, $B$, $C$ are collinear then the points $Q$, $O_1$, $O_2$ and $O_3$ lie on the same circle.