Found problems: 1581
1985 IMO Longlists, 72
Construct a triangle $ABC$ given the side $AB$ and the distance $OH$ from the circumcenter $O$ to the orthocenter $H$, assuming that $OH$ and $AB$ are parallel.
2011 CentroAmerican, 2
In a scalene triangle $ABC$, $D$ is the foot of the altitude through $A$, $E$ is the intersection of $AC$ with the bisector of $\angle ABC$ and $F$ is a point on $AB$. Let $O$ the circumcenter of $ABC$ and $X=AD\cap BE$, $Y=BE\cap CF$, $Z=CF \cap AD$. If $XYZ$ is an equilateral triangle, prove that one of the triangles $OXY$, $OYZ$, $OZX$ must be equilateral.
2013 IberoAmerican, 6
A [i]beautiful configuration[/i] of points is a set of $n$ colored points, such that if a triangle with vertices in the set has an angle of at least $120$ degrees, then exactly 2 of its vertices are colored with the same color. Determine the maximum possible value of $n$.
2002 Moldova Team Selection Test, 3
The circles $W_1, W_2, W_3$ in the plane are pairwise externally tangent to each other. Let $P_1$ be the point of tangency between circles $W_1$ and $W_3$, and let $P_2$ be the point of tangency between circles $W_2$ and $W_3$. $A$ and $B$, both different from $P_1$ and $P_2$, are points on $W_3$ such that $AB$ is a diameter of $W_3$. Line $AP_1$ intersects $W_1$ again at $X$, line $BP_2$ intersects $W_2$ again at $Y$, and lines $AP_2$ and $BP_1$ intersect at $Z$. Prove that $X, Y$, and $Z$ are collinear.
2012 Online Math Open Problems, 31
Let $ABC$ be a triangle inscribed in circle $\Gamma$, centered at $O$ with radius $333.$ Let $M$ be the midpoint of $AB$, $N$ be the midpoint of $AC$, and $D$ be the point where line $AO$ intersects $BC$. Given that lines $MN$ and $BO$ concur on $\Gamma$ and that $BC = 665$, find the length of segment $AD$.
[i]Author: Alex Zhu[/i]
1999 All-Russian Olympiad, 3
The incircle of $\triangle ABC$ touch $AB$,$BC$,$CA$ at $K$,$L$,$M$. The common external tangents to the incircles of $\triangle AMK$,$\triangle BKL$,$\triangle CLM$, distinct from the sides of $\triangle ABC$, are drawn. Show that these three lines are concurrent.
2013 Iran MO (3rd Round), 1
Let $ABCDE$ be a pentagon inscribe in a circle $(O)$. Let $ BE \cap AD = T$. Suppose the parallel line with $CD$ which passes through $T$ which cut $AB,CE$ at $X,Y$. If $\omega$ be the circumcircle of triangle $AXY$ then prove that $\omega$ is tangent to $(O)$.
2013 Kazakhstan National Olympiad, 1
Given triangle ABC with incenter I. Let P,Q be point on circumcircle such that $\angle API=\angle CPI$ and $\angle BQI=\angle CQI$.Prove that $BP,AQ$ and $OI$ are concurrent.
2007 ISI B.Math Entrance Exam, 10
The eleven members of a cricket team are numbered $1,2,...,11$. In how many ways can the entire cricket team sit on the eleven chairs arranged around a circular table so that the numbers of any two adjacent players differ by one or two ?
2006 South East Mathematical Olympiad, 3
There is a standard deck of $52$ cards without jokers. The deck consists of four suits(diamond, club, heart, spade) which include thirteen cards in each. For each suit, all thirteen cards are ranked from “$2$” to “$A$” (i.e. $2, 3,\ldots , Q, K, A$). A pair of cards is called a “[i]straight flush[/i]” if these two cards belong to the same suit and their ranks are adjacent. Additionally, "$A$" and "$2$" are considered to be adjacent (i.e. "A" is also considered as "$1$"). For example, spade $A$ and spade $2$ form a “[i]straight flush[/i]”; diamond $10$ and diamond $Q$ are not a “[i]straight flush[/i]” pair. Determine how many ways of picking thirteen cards out of the deck such that all ranks are included but no “[i]straight flush[/i]” exists in them.
1984 AIME Problems, 12
A function $f$ is defined for all real numbers and satisfies \[f(2 + x) = f(2 - x)\qquad\text{and}\qquad f(7 + x) = f(7 - x)\] for all real $x$. If $x = 0$ is a root of $f(x) = 0$, what is the least number of roots $f(x) = 0$ must have in the interval $-1000 \le x \le 1000$?
2010 All-Russian Olympiad, 2
Into triangle $ABC$ gives point $K$ lies on bisector of $ \angle BAC$. Line $CK$ intersect circumcircle $ \omega$ of triangle $ABC$ at $M \neq C$. Circle $ \Omega$ passes through $A$, touch $CM$ at $K$ and intersect segment $AB$ at $P \neq A$ and $\omega $ at $Q \neq A$.
Prove, that $P$, $Q$, $M$ lies at one line.
2014 Czech-Polish-Slovak Match, 6
Let $n \ge 6$ be an integer and $F$ be the system of the $3$-element subsets of the set $\{1, 2,...,n \}$ satisfying the following condition:
for every $1 \le i < j \le n$ there is at least $ \lfloor \frac{1}{3} n \rfloor -1$ subsets $A\in F$ such that $i, j \in A$.
Prove that for some integer $m \ge 1$ exist the mutually disjoint subsets $A_1, A_2 , ... , A_m \in F $ also, that $|A_1\cup A_2 \cup ... \cup A_m |\ge n-5 $
(Poland)
PS. just in case my translation does not make sense,
I leave the original in Slovak, in case someone understands something else
2009 Harvard-MIT Mathematics Tournament, 1
A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid.
[asy]
size(150);
defaultpen(linewidth(0.8));
draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1));
draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4"));
draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4"));
label("$5$",(0,5/2),W);
label("$8$",(4,0),S);
[/asy]
2007 Kyiv Mathematical Festival, 4
The point $D$ at the side $AB$ of triangle $ABC$ is given. Construct points $E,F$ at sides $BC, AC$ respectively such that the midpoints of $DE$ and $DF$ are collinear with $B$ and the midpoints of $DE$ and $EF$ are collinear with $C.$
2011 Kazakhstan National Olympiad, 5
On the table lay a pencil, sharpened at one end. The student can rotate the pencil around one of its ends at $45^{\circ}$ clockwise or counterclockwise. Can the student, after a few turns of the pencil, go back to the starting position so that the sharpened end and the not sharpened are reversed?
2008 Dutch Mathematical Olympiad, 1
Suppose we have a square $ABCD$ and a point $S$ in the interior of this square.
Under homothety with centre $S$ and ratio of magnification $k > 1$, this square becomes another square $A'B'C'D'$.
Prove that the sum of the areas of the two quadrilaterals $A'ABB'$ and $C'CDD'$ are equal to the sum of the areas of the two quadrilaterals $B'BCC'$ and $D'DAA'$.
[asy]
unitsize(3 cm);
pair[] A, B, C, D;
pair S;
A[1] = (0,1);
B[1] = (0,0);
C[1] = (1,0);
D[1] = (1,1);
S = (0.3,0.6);
A[0] = interp(S,A[1],2/3);
B[0] = interp(S,B[1],2/3);
C[0] = interp(S,C[1],2/3);
D[0] = interp(S,D[1],2/3);
draw(A[0]--B[0]--C[0]--D[0]--cycle);
draw(A[1]--B[1]--C[1]--D[1]--cycle);
draw(A[1]--S, dashed);
draw(B[1]--S, dashed);
draw(C[1]--S, dashed);
draw(D[1]--S, dashed);
dot("$A$", A[0], N);
dot("$B$", B[0], SE);
dot("$C$", C[0], SW);
dot("$D$", D[0], SE);
dot("$A'$", A[1], NW);
dot("$B'$", B[1], SW);
dot("$C'$", C[1], SE);
dot("$D'$", D[1], NE);
dot("$S$", S, dir(270));
[/asy]
1997 Taiwan National Olympiad, 8
Let $O$ be the circumcenter and $R$ be the circumradius of an acute triangle $ABC$. Let $AO$ meet the circumcircle of $OBC$ again at $D$, $BO$ meet the circumcircle of $OCA$ again at $E$, and $CO$ meet the circumcircle of $OAB$ again at $F$. Show that $OD.OE.OF\geq 8R^{3}$.
1988 IMO Longlists, 40
[b]i.)[/b] Consider a circle $K$ with diameter $AB;$ with circle $L$ tangent to $AB$ and to $K$ and with a circle $M$ tangent to circle $K,$ circle $L$ and $AB.$ Calculate the ration of the area of circle $K$ to the area of circle $M.$
[b]ii.)[/b] In triangle $ABC, AB = AC$ and $\angle CAB = 80^{\circ}.$ If points $D,E$ and $F$ lie on sides $BC, AC$ and $AB,$ respectively and $CE = CD$ and $BF = BD,$ then find the size of $\angle EDF.$
2011 District Round (Round II), 2
Let $ABC$ denote a triangle with area $S$. Let $U$ be any point inside the triangle whose vertices are the midpoints of the sides of triangle $ABC$. Let $A'$, $B'$, $C'$ denote the reflections of $A$, $B$, $C$, respectively, about the point $U$. Prove that hexagon $AC'BA'CB'$ has area $2S$.
2024 Sharygin Geometry Olympiad, 5
Points $A', B', C'$ are the reflections of vertices $A, B, C$ about the opposite sidelines of triangle $ABC$. Prove that the circles $AB'C', A'BC',$ and $A'B'C$ have a common point.
2009 Miklós Schweitzer, 5
Let $ G$ be a finite non-commutative group of order $ t \equal{} 2^nm$, where $ n, m$ are positive and $ m$ is odd. Prove, that if the group contains an element of order $ 2^n$, then
(i) $ G$ is not simple;
(ii) $ G$ contains a normal subgroup of order $ m$.
2019 Czech-Polish-Slovak Junior Match, 5
Let $A_1A_2 ...A_{360}$ be a regular $360$-gon with centre $S$. For each of the triangles $A_1A_{50}A_{68}$ and $A_1A_{50}A_{69}$ determine, whether its images under some $120$ rotations with centre $S$ can have (as triangles) all the $360$ points $A_1, A_2, ..., A_{360}$ as vertices.
1967 IMO Longlists, 54
Is it possible to find a set of $100$ (or $200$) points on the boundary of a cube such that this set remains fixed under all rotations which leave the cube fixed ?
2004 Tournament Of Towns, 4
Vanya has chosen two positive numbers, x and y. He wrote the numbers x+y, x-y, x/y, and xy, and has shown these numbers to Petya. However, he didn't say which of the numbers was obtained from which operation. Show that Petya can uniquely recover x and y.