This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020 Iran MO (3rd Round), 4

Tags: geometry
Triangle $ABC$ is given. Let $O$ be it's circumcenter. Let $I$ be the center of it's incircle.The external angle bisector of $A$ meet $BC$ at $D$. And $I_A$ is the $A$-excenter . The point $K$ is chosen on the line $AI$ such that $AK=2AI$ and $A$ is closer to $K$ than $I$. If the segment $DF$ is the diameter of the circumcircle of triangle $DKI_A$, then prove $OF=3OI$.

2011 IMO Shortlist, 7

Let $ABCDEF$ be a convex hexagon all of whose sides are tangent to a circle $\omega$ with centre $O$. Suppose that the circumcircle of triangle $ACE$ is concentric with $\omega$. Let $J$ be the foot of the perpendicular from $B$ to $CD$. Suppose that the perpendicular from $B$ to $DF$ intersects the line $EO$ at a point $K$. Let $L$ be the foot of the perpendicular from $K$ to $DE$. Prove that $DJ=DL$. [i]Proposed by Japan[/i]

2016 Germany Team Selection Test, 1

The two circles $\Gamma_1$ and $\Gamma_2$ with the midpoints $O_1$ resp. $O_2$ intersect in the two distinct points $A$ and $B$. A line through $A$ meets $\Gamma_1$ in $C \neq A$ and $\Gamma_2$ in $D \neq A$. The lines $CO_1$ and $DO_2$ intersect in $X$. Prove that the four points $O_1,O_2,B$ and $X$ are concyclic.

2010 Romania Team Selection Test, 1

Let $P$ be a point in the plane and let $\gamma$ be a circle which does not contain $P$. Two distinct variable lines $\ell$ and $\ell'$ through $P$ meet the circle $\gamma$ at points $X$ and $Y$, and $X'$ and $Y'$, respectively. Let $M$ and $N$ be the antipodes of $P$ in the circles $PXX'$ and $PYY'$, respectively. Prove that the line $MN$ passes through a fixed point. [i]Mihai Chis[/i]

PEN F Problems, 1

Suppose that a rectangle with sides $ a$ and $ b$ is arbitrarily cut into $ n$ squares with sides $ x_{1},\ldots,x_{n}$. Show that $ \frac{x_{i}}{a}\in\mathbb{Q}$ and $ \frac{x_{i}}{b}\in\mathbb{Q}$ for all $ i\in\{1,\cdots, n\}$.

2006 JHMT, Team Round

[b]p1. [/b] Evaluate $S$. $$S =\frac{10000^2 - 1}{\sqrt{10000^2 - 19999}}$$ [b]p2. [/b] Starting on a triangular face of a right triangular prism and allowing moves to only adjacent faces, how many ways can you pass through each of the other four faces and return to the first face in five moves? [b]p3.[/b] Given that $$(a + b) + (b + c) + (c + a) = 18$$ $$\frac{1}{a + b}+\frac{1}{b + c}+ \frac{1}{c + a}=\frac59,$$ determine $$\frac{c}{a + b}+\frac{a}{b + c}+\frac{b}{c + a}.$$ [b]p4.[/b] Find all primes $p$ such that $2^{p+1} + p^3 - p^2 - p$ is prime. [b]p5.[/b] In right triangle $ABC$ with the right angle at $A$, $AF$ is the median, $AH$ is the altitude, and $AE$ is the angle bisector. If $\angle EAF = 30^o$ , find $\angle BAH$ in degrees. [b]p6.[/b] For which integers $a$ does the equation $(1 - a)(a - x)(x- 1) = ax$ not have two distinct real roots of $x$? [b]p7. [/b]Given that $a^2 + b^2 - ab - b +\frac13 = 0$, solve for all $(a, b)$. [b]p8. [/b] Point $E$ is on side $\overline{AB}$ of the unit square $ABCD$. $F$ is chosen on $\overline{BC}$ so that $AE = BF$, and $G$ is the intersection of $\overline{DE}$ and $\overline{AF}$. As the location of $E$ varies along side $\overline{AB}$, what is the minimum length of $\overline{BG}$? [b]p9.[/b] Sam and Susan are taking turns shooting a basketball. Sam goes first and has probability $P$ of missing any shot, while Susan has probability $P$ of making any shot. What must $P$ be so that Susan has a $50\%$ chance of making the first shot? [b]p10.[/b] Quadrilateral $ABCD$ has $AB = BC = CD = 7$, $AD = 13$, $\angle BCD = 2\angle DAB$, and $\angle ABC = 2\angle CDA$. Find its area. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Yasinsky Geometry Olympiad, 4

Let $X$ be an arbitrary point on side $BC$ of triangle $ABC$. Triangle $T$ is formed by the angle bisectors of the angles $\angle ABC$, $\angle ACB$ and $\angle AXC$. Prove that the circle circumscribed around the triangle $T$, passes through the vertex $A$. (Dmytro Prokopenko)

2018 IMO Shortlist, C1

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2015 India National Olympiad, 5

Let $ABCD$ be a convex quadrilateral.Let diagonals $AC$ and $BD$ intersect at $P$. Let $PE,PF,PG$ and $PH$ are altitudes from $P$ on the side $AB,BC,CD$ and $DA$ respectively. Show that $ABCD$ has a incircle if and only if $\frac{1}{PE}+\frac{1}{PG}=\frac{1}{PF}+\frac{1}{PH}.$

1967 AMC 12/AHSME, 12

If the (convex) area bounded by the x-axis and the lines $y=mx+4$, $x=1$, and $x=4$ is $7$, then $m$ equals: $\textbf{(A)}\ -\frac{1}{2}\qquad \textbf{(B)}\ -\frac{2}{3}\qquad \textbf{(C)}\ -\frac{3}{2} \qquad \textbf{(D)}\ -2 \qquad \textbf{(E)}\ \text{none of these}$

2000 Slovenia National Olympiad, Problem 3

Tags: geometry
Let $H$ be the orthocenter of an acute-angled triangle $ABC$ with $AC\ne BC$. The line through the midpoints of the segments $AB$ and $HC$ intersects the bisector of $\angle ACB$ at $D$. Suppose that the line $HD$ contains the circumcenter of $\triangle ABC$. Determine $\angle ACB$.

2008 Baltic Way, 17

Assume that $ a$, $ b$, $ c$ and $ d$ are the sides of a quadrilateral inscribed in a given circle. Prove that the product $ (ab \plus{} cd)(ac \plus{} bd)(ad \plus{} bc)$ acquires its maximum when the quadrilateral is a square.

2011 Vietnam Team Selection Test, 1

A grasshopper rests on the point $(1,1)$ on the plane. Denote by $O,$ the origin of coordinates. From that point, it jumps to a certain lattice point under the condition that, if it jumps from a point $A$ to $B,$ then the area of $\triangle AOB$ is equal to $\frac 12.$ $(a)$ Find all the positive integral poijnts $(m,n)$ which can be covered by the grasshopper after a finite number of steps, starting from $(1,1).$ $(b)$ If a point $(m,n)$ satisfies the above condition, then show that there exists a certain path for the grasshopper to reach $(m,n)$ from $(1,1)$ such that the number of jumps does not exceed $|m-n|.$

1991 Denmark MO - Mohr Contest, 3

A right-angled triangle has perimeter $60$ and the altitude of the hypotenuse has a length $12$. Determine the lengths of the sides.

Indonesia Regional MO OSP SMA - geometry, 2004.2

Tags: geometry , ratio , cevian
Triangle $ABC$ is given. The points $D, E$, and $F$ are located on the sides $BC, CA$ and $AB$ respectively so that the lines $AD, BE$ and $CF$ intersect at point $O$. Prove that $\frac{AO}{AD} + \frac{BO}{BE} + \frac{CO}{ CF}=2$

1992 Canada National Olympiad, 3

In the diagram, $ ABCD$ is a square, with $ U$ and $ V$ interior points of the sides $ AB$ and $ CD$ respectively. Determine all the possible ways of selecting $ U$ and $ V$ so as to maximize the area of the quadrilateral $ PUQV$. [img]http://i250.photobucket.com/albums/gg265/geometry101/CMO1992Number3.jpg[/img]

2002 Spain Mathematical Olympiad, Problem 5

Consider $2002$ segments on a plane, such that their lengths are the same. Prove that there exists such a straight line $r$ such that the sum of the lengths of the projections of the $2002$ segments about $r$ is less than $\frac{2}{3}$.

1978 Bundeswettbewerb Mathematik, 2

Seven distinct points are given inside a square with side length $1.$ Together with the square's vertices, they form a set of $11$ points. Consider all triangles with vertices in $M.$ a) Show that at least one of these triangles has an area not exceeding $1\slash 16.$ b) Give an example in which no four of the seven points are on a line and none of the considered triangles has an area of less than $1\slash 16.$

2016 India IMO Training Camp, 2

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

2006 Moldova MO 11-12, 7

Tags: geometry
Let $n\in\mathbb{N}^*$. $2n+3$ points on the plane are given so that no 3 lie on a line and no 4 lie on a circle. Is it possible to find 3 points so that the interior of the circle passing through them would contain exactly $n$ of the remaining points.

2018 Thailand TSTST, 2

In triangle $\vartriangle ABC$, $\angle BAC = 135^o$. $M$ is the midpoint of $BC$, and $N \ne M$ is on $BC$ such that $AN = AM$. The line $AM$ meets the circumcircle of $\vartriangle ABC$ at $D$. Point $E$ is chosen on segment $AN$ such that $AE = MD$. Show that $ME = BC$.

2009 Germany Team Selection Test, 1

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

2009 China Team Selection Test, 1

Tags: geometry
In convex pentagon $ ABCDE$, denote by $ AD\cap BE = F,BE\cap CA = G,CA\cap DB = H,DB\cap EC = I,EC\cap AD = J; AI\cap BE = A',BJ%Error. "capCA" is a bad command. = B',CF%Error. "capDB" is a bad command. = C',DG\cap EC = D',EH\cap AD = E'.$ Prove that $ \frac {AB'}{B'C}\cdot\frac {CD'}{D'E}\cdot\frac {EA'}{A'B}\cdot\frac {BC'}{C'D}\cdot\frac {DE'}{E'A} = 1$.

1981 Bulgaria National Olympiad, Problem 3

A quadrilateral pyramid is cut by a plane parallel to the base. Suppose that a sphere $S$ is circumscribed and a sphere $\Sigma$ inscribed in the obtained solid, and moreover that the line through the centers of these two spheres is perpendicular to the base of the pyramid. Show that the pyramid is regular.

2011 Today's Calculation Of Integral, 703

Given a line segment $PQ$ with endpoints on the parabola $y=x^2$ such that the area bounded by $PQ$ and the parabola always equal to $\frac 43.$ Find the equation of the locus of the midpoint $M$.