Found problems: 25757
1978 Germany Team Selection Test, 5
Let $E$ be a finite set of points such that $E$ is not contained in a plane and no three points of $E$ are collinear. Show that at least one of the following alternatives holds:
(i) $E$ contains five points that are vertices of a convex pyramid having no other points in common with $E;$
(ii) some plane contains exactly three points from $E.$
1950 AMC 12/AHSME, 35
In triangle $ABC$, $AC=24$ inches, $BC=10$ inches, $AB=26$ inches. The radius of the inscribed circle is:
$\textbf{(A)}\ 26\text{ in} \qquad
\textbf{(B)}\ 4\text{ in} \qquad
\textbf{(C)}\ 13\text{ in} \qquad
\textbf{(D)}\ 8\text{ in} \qquad
\textbf{(E)}\ \text{None of these}$
2024 Mexico National Olympiad, 4
Let $ABC$ an acute triangle with orthocenter $H$. Let $M$ be a point on segment $BC$. The line through $M$ and perpendicular to $BC$ intersects lines $BH$ and $CH$ in points $P$ and $Q$ respectively. Prove that the orthocenter of triangle $HPQ$ lies on the line $AM$.
1997 Hungary-Israel Binational, 3
Let $ ABC$ be an acute angled triangle whose circumcenter is $ O$. The three diameters of the circumcircle that pass through $ A$, $ B$, and $ C$, meet the opposite sides $ BC$, $ CA$, and $ AB$ at the points $ A_1$, $ B_1$ and $ C_1$, respectively. The circumradius of $ ABC$ is of length $ 2P$, where $ P$ is a prime number. The lengths of $ OA_1$, $ OB_1$, $ OC_1$ are integers. What are the lengths of the sides of the triangle?
2012 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, point $I$ is the center of the inscribed circle points, points $I_A$ and $I_C$ are the centers of the excircles, tangent to sides $BC$ and $AB$, respectively. Point $O$ is the center of the circumscribed circle of triangle $II_AI_C$. Prove that $OI \perp AC$
1990 IMO Longlists, 5
Given the condition that there exist exactly $1990$ triangles $ABC$ with integral side-lengths satisfying the following conditions:
(i) $\angle ABC =\frac 12 \angle BAC;$
(ii) $AC = b.$
Find the minimal value of $b.$
1993 Turkey Team Selection Test, 5
Points $E$ and $C$ are chosen on a semicircle with diameter $AB$ and center $O$ such that $OE \perp AB$ and the intersection point $D$ of $AC$ and $OE$ is inside the semicircle. Find all values of $\angle{CAB}$ for which the quadrilateral $OBCD$ is tangent.
LMT Guts Rounds, 2022 F
[u]Round 6 [/u]
[b]p16.[/b] Let $a$ be a solution to $x^3 -x +1 = 0$. Find $a^6 -a^2 +2a$.
[b]p17.[/b] For a positive integer $n$, $\phi (n)$ is the number of positive integers less than $n$ that are relatively prime to $n$. Compute the sum of all $n$ for which $\phi (n) = 24$.
[b]p18.[/b] Let $x$ be a positive integer such that $x^2 \equiv 57$ (mod $59$). Find the least possible value of $x$.
[u]Round 7[/u]
[b]p19.[/b] In the diagram below, find the number of ways to color each vertex red, green, yellow or blue such that no two vertices of a triangle have the same color.
[img]https://cdn.artofproblemsolving.com/attachments/1/e/01418af242c7e2c095a53dd23e997b8d1f3686.png[/img]
[b]p20.[/b] In a set with $n$ elements, the sum of the number of ways to choose $3$ or $4$ elements is a multiple of the sumof the number of ways to choose $1$ or $2$ elements. Find the number of possible values of $n$ between $4$ and $120$ inclusive.
[b]p21.[/b] In unit square $ABCD$, let $\Gamma$ be the locus of points $P$ in the interior of $ABCD$ such that $2AP < BP$. The area of $\Gamma$ can be written as $\frac{a\pi +b\sqrt{c}}{d}$ for integers $a,b,c,d$ with $c$ squarefree and $gcd(a,b,d) = 1$. Find $1000000a +10000b +100c +d$.
[u]Round 8 [/u]
[b]p22.[/b] Ephram, GammaZero, and Orz walk into a bar. Each write some permutation of the letters “LMT” once, then concatenate their permutations one after the other (i.e. LTMTLMTLM would be a possible string, but not LLLMMMTTT). Suppose that the probability that the string “LMT” appears in that order among the new $9$-character string can be written as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p23.[/b] In $\vartriangle ABC$ with side lengths $AB = 27$, $BC = 35$, and $C A = 32$, let $D$ be the point at which the incircle is tangent to $BC$. The value of $\frac{\sin \angle C AD }{\sin\angle B AD}$ can be expressed as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p24.[/b] Let $A$ be the greatest possible area of a square contained in a regular hexagon with side length $1$. Let B be the least possible area of a square that contains a regular hexagon with side length $1$. The value of $B-A$ can be expressed as $a\sqrt{b}-c$ for positive integers $a$, $b$, and $c$ with $b$ squarefree. Find $10000a +100b +c$.
[u]Round 9[/u]
[b]p25.[/b] Estimate how many days before today this problem was written. If your estimation is $E$ and the actual answer is $A$, you will receive $\max \left( \left \lfloor 10 - \left| \frac{E-A}{2} \right| \right \rfloor , 0 \right)$ points.
[b]p26.[/b] Circle $\omega_1$ is inscribed in unit square $ABCD$. For every integer $1 < n \le 10,000$, $\omega_n$ is defined as the largest circle which can be drawn inside $ABCD$ that does not overlap the interior of any of $\omega_1$,$\omega_2$, $...$,$\omega_{n-1}$ (If there are multiple such $\omega_n$ that can be drawn, one is chosen at random). Let r be the radius of ω10,000. Estimate $\frac{1}{r}$ . If your estimation is $E$ and the actual answer is $A$, you will receive $\max \left( \left \lfloor 10 - \left| \frac{E-A}{200} \right| \right \rfloor , 0 \right)$ points.
[b]p27.[/b] Answer with a positive integer less than or equal to $20$. We will compare your response with the response of every other team that answered this problem. When two equal responses are compared, neither team wins. When two unequal responses $A > B$ are compared, $A$ wins if $B | A$, and $B$ wins otherwise. If your team wins n times, you will receive $\left \lfloor \frac{n}{2} \right \rfloor$ points.
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3167135p28823324]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 IMO, 4
Let $ABC$ be a triangle with $AB < AC < BC$. Let the incenter and incircle of triangle $ABC$ be $I$ and $\omega$, respectively. Let $X$ be the point on line $BC$ different from $C$ such that the line through $X$ parallel to $AC$ is tangent to $\omega$. Similarly, let $Y$ be the point on line $BC$ different from $B$ such that the line through $Y$ parallel to $AB$ is tangent to $\omega$. Let $AI$ intersect the circumcircle of triangle $ABC$ at $P \ne A$. Let $K$ and $L$ be the midpoints of $AC$ and $AB$, respectively.
Prove that $\angle KIL + \angle YPX = 180^{\circ}$.
[i]Proposed by Dominik Burek, Poland[/i]
2006 AMC 10, 6
A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $ 2/\pi $, as shown. What is the perimeter of this region?
[asy]
size(90); defaultpen(linewidth(0.7));
filldraw((0,0)--(2,0)--(2,2)--(0,2)--cycle,gray(0.5));
filldraw(arc((1,0),1,180,0, CCW)--cycle,gray(0.7));
filldraw(arc((0,1),1,90,270)--cycle,gray(0.7));
filldraw(arc((1,2),1,0,180)--cycle,gray(0.7));
filldraw(arc((2,1),1,270,90, CCW)--cycle,gray(0.7));[/asy]
$ \textbf{(A) }\frac {4}\pi\qquad\textbf{(B) }2\qquad\textbf{(C) }\frac {8}\pi\qquad\textbf{(D) }4\qquad\textbf{(E) }\frac{16}{\pi} $
Croatia MO (HMO) - geometry, 2010.7
Given a non- isosceles triangle $ABC$. Let the points $B'$ and $C'$ be symmetric to the points $B$ and $C$ wrt $AC$ and $AB$ respectively. If the circles circumscribed around triangles $ABB'$ and $ACC'$ intersect at point $P$, prove that the line $AP$ passes through the center of the circumcircle of the triangle $ABC$.
2008 HMNT, 5
A triangle has altitudes of length $15$, $21$, and $35$. Find its area.
2019-IMOC, G1
Let $I$ be the incenter of a scalene triangle $\vartriangle ABC$. In other words, $\overline{AB},\overline{BC},\overline{CA}$ are distinct. Prove that if $D,E$ are two points on rays $\overrightarrow{BA},\overrightarrow{CA}$, satisfying $\overline{BD}=\overline{CA},\overline{CE}=\overline{BA}$ then line $DE$ pass through the orthocenter of $\vartriangle BIC$.
[img]http://2.bp.blogspot.com/-aHCD5tL0FuA/XnYM1LoZjWI/AAAAAAAALeE/C6hO9W9FGhcuUP3MQ9aD7SNq5q7g_cY9QCK4BGAYYCw/s1600/imoc2019g1.png[/img]
2021 Balkan MO Shortlist, G5
Let $ABC$ be an acute triangle with $AC > AB$ and circumcircle $\Gamma$. The tangent from $A$
to $\Gamma$ intersects $BC$ at $T$. Let $M$ be the midpoint of $BC$ and let $R$ be the reflection of $A$ in $B$.
Let $S$ be a point so that $SABT$ is a parallelogram and finally let $P$ be a point on line $SB$ such
that $MP$ is parallel to $AB$.
Given that $P$ lies on $\Gamma$, prove that the circumcircle of $\triangle STR$ is tangent to line $AC$.
[i]Proposed by Sam Bealing, United Kingdom[/i]
2006 Iran MO (2nd round), 2
Let $ABCD$ be a convex cyclic quadrilateral. Prove that:
$a)$ the number of points on the circumcircle of $ABCD$, like $M$, such that $\frac{MA}{MB}=\frac{MD}{MC}$ is $4$.
$b)$ The diagonals of the quadrilateral which is made with these points are perpendicular to each other.
1979 Canada National Olympiad, 2
It is known in Euclidean geometry that the sum of the angles of a triangle is constant. Prove, however, that the sum of the dihedral angles of a tetrahedron is not constant.
1959 IMO, 5
An arbitrary point $M$ is selected in the interior of the segment $AB$. The square $AMCD$ and $MBEF$ are constructed on the same side of $AB$, with segments $AM$ and $MB$ as their respective bases. The circles circumscribed about these squares, with centers $P$ and $Q$, intersect at $M$ and also at another point $N$. Let $N'$ denote the point of intersection of the straight lines $AF$ and $BC$.
a) Prove that $N$ and $N'$ coincide;
b) Prove that the straight lines $MN$ pass through a fixed point $S$ independent of the choice of $M$;
c) Find the locus of the midpoints of the segments $PQ$ as $M$ varies between $A$ and $B$.
1998 All-Russian Olympiad Regional Round, 10.6
The pentagon $A_1A_2A_3A_4A_5$ contains bisectors $\ell_1$, $\ell_2$, $...$, $\ell_5$ of angles $\angle A_1$, $\angle A_2$, $ ...$ , $\angle A_5$ respectively. Bisectors $\ell_1$ and $\ell_2$ intersect at point $B_1$, $\ell_2$ and $\ell_3$ - at point $B_2$, etc., $\ell_5$ and $\ell_1$ intersect at point $B_5$. Can the pentagon $B_1B_2B_3B_4B_5$ be convex?
2005 Cono Sur Olympiad, 1
Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.
2012-2013 SDML (Middle School), 11
Six different-sized cubes are glued together, one on top of the other. The bottom cube has edge length $8$. Each of the other cubes has four vertices at the midpoints of the edges of the cube below it as shown. The entire solid is then dipped in red paint. What is the total area of the red-painted surface on the solid?
(will insert image here later)
$\text{(A) }630\qquad\text{(B) }632\qquad\text{(C) }648\qquad\text{(D) }694\qquad\text{(E) }756$
2012 Bogdan Stan, 4
Let be three real positive numbers $ \alpha ,\beta ,\gamma $ and let $ M,N $ be points on the sides $ AB,BC, $ respectively, of a triangle $ ABC, $ such that $ \frac{MA}{MB} =\frac{\alpha }{\beta } $ and $ \frac{NB}{NC} =\frac{\beta }{\gamma } . $ Also, let $ P $ be the intersection of $ CM $ with $ AN. $ Show that:
$$ \frac{1}{\alpha }\overrightarrow{PA} +\frac{1}{\beta }\overrightarrow{PB} +\frac{1}{\gamma }\overrightarrow{PC} =0 $$
2012 India Regional Mathematical Olympiad, 4
Let $a,b,c$ be positive real numbers such that $abc(a+b+c)=3.$ Prove that we have
\[(a+b)(b+c)(c+a)\geq 8.\]
Also determine the case of equality.
2009 Puerto Rico Team Selection Test, 3
Show that if $ h_A, h_B,$ and $ h_C$ are the altitudes of $ \triangle ABC$, and $ r$ is the radius of the incircle, then $$ h_A + h_B + h_C \ge 9r$$
1969 German National Olympiad, 2
There is a circle $k$ in a plane with center $M$ and radius $r$. The following illustration, through which every point $P \ne M$., is called a “reflection on the circle $k$” from $\varepsilon$ a point $P'$ from $\varepsilon$ is assigned:
(1) $P'$ lies on the ray emanating from$ M$ and passing through $P$.
(2) It is $MP \cdot MP' = r^2$.
a) Construct the mirror point $ P'$ for any given point $P \ne M$ inside $k$.
b) Let another circle $k_1$ be given arbitrarily, but such that $M$ lies outside $k_1$.Construct $k'_1$ , i.e. the set of all mirror points $P'$ of the points $P$ of $k_1$.
2009 Sharygin Geometry Olympiad, 18
Given three parallel lines on the plane. Find the locus of incenters of triangles with vertices lying on these lines (a single vertex on each line).